scholarly journals The CHD8/CHD7/Kismet family links blood-brain barrier glia and serotonin to ASD-associated sleep defects

2021 ◽  
Vol 7 (23) ◽  
pp. eabe2626
Author(s):  
Mireia Coll-Tané ◽  
Naihua N. Gong ◽  
Samuel J. Belfer ◽  
Lara V. van Renssen ◽  
Evangeline C. Kurtz-Nelson ◽  
...  

Sleep disturbances in autism and neurodevelopmental disorders are common and adversely affect patient’s quality of life, yet the underlying mechanisms are understudied. We found that individuals with mutations in CHD8, among the highest-confidence autism risk genes, or CHD7 suffer from disturbed sleep maintenance. These defects are recapitulated in Drosophila mutants affecting kismet, the sole CHD8/CHD7 ortholog. We show that Kismet is required in glia for early developmental and adult sleep architecture. This role localizes to subperineurial glia constituting the blood-brain barrier. We demonstrate that Kismet-related sleep disturbances are caused by high serotonin during development, paralleling a well-established but genetically unsolved autism endophenotype. Despite their developmental origin, Kismet’s sleep architecture defects can be reversed in adulthood by a behavioral regime resembling human sleep restriction therapy. Our findings provide fundamental insights into glial regulation of sleep and propose a causal mechanistic link between the CHD8/CHD7/Kismet family, developmental hyperserotonemia, and autism-associated sleep disturbances.

Author(s):  
Falaq Naz ◽  
Yasir Hasan Siddique

: Neurodegenerative diseases including Alzheimer’s, Parkinson’s and Huntington disease are have serious concern due to its effect on the quality of life of affected persons. Neurodegenerative diseases have some limitations for both diagnostic as well as at treatment level. Introducing nanotechnology, for the treatment of these diseases may contribute significantly in solving the problem. There are several treatment strategies for the neurodegenerative diseases, but their limitations are the entry into the due to the presence of the blood-brain barrier (BBB). The present review highlights the application of nanotechnology during last 20 years for the treatment of neurodegenerative diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bailey Hiles-Murison ◽  
Andrew P. Lavender ◽  
Mark J. Hackett ◽  
Joshua J. Armstrong ◽  
Michael Nesbit ◽  
...  

AbstractRepeated sub-concussive impact (e.g. soccer ball heading), a significantly lighter form of mild traumatic brain injury, is increasingly suggested to cumulatively alter brain structure and compromise neurobehavioural function in the long-term. However, the underlying mechanisms whereby repeated long-term sub-concussion induces cerebral structural and neurobehavioural changes are currently unknown. Here, we utilised an established rat model to investigate the effects of repeated sub-concussion on size of lateral ventricles, cerebrovascular blood–brain barrier (BBB) integrity, neuroinflammation, oxidative stress, and biochemical distribution. Following repeated sub-concussion 3 days per week for 2 weeks, the rats showed significantly enlarged lateral ventricles compared with the rats receiving sham-only procedure. The sub-concussive rats also presented significant BBB dysfunction in the cerebral cortex and hippocampal formation, whilst neuromotor function assessed by beamwalk and rotarod tests were comparable to the sham rats. Immunofluorescent and spectroscopic microscopy analyses revealed no significant changes in neuroinflammation, oxidative stress, lipid distribution or protein aggregation, within the hippocampus and cortex. These data collectively indicate that repeated sub-concussion for 2 weeks induce significant ventriculomegaly and BBB disruption, preceding neuromotor deficits.


2020 ◽  
Vol 18 (12) ◽  
pp. 1213-1226
Author(s):  
Li Gao ◽  
Zhenghong Song ◽  
Jianhua Mi ◽  
Pinpin Hou ◽  
Chong Xie ◽  
...  

Ischemic stroke is one of the main causes of mortality and disability worldwide. However, efficient therapeutic strategies are still lacking. Stem/progenitor cell-based therapy, with its vigorous advantages, has emerged as a promising tool for the treatment of ischemic stroke. The mechanisms involve new neural cells and neuronal circuitry formation, antioxidation, inflammation alleviation, angiogenesis, and neurogenesis promotion. In the past decades, in-depth studies have suggested that cell therapy could promote vascular stabilization and decrease blood-brain barrier (BBB) leakage after ischemic stroke. However, the effects and underlying mechanisms on BBB integrity induced by the engrafted cells in ischemic stroke have not been reviewed yet. Herein, we will update the progress in research on the effects of cell therapy on BBB integrity after ischemic stroke and review the underlying mechanisms. First, we will present an overview of BBB dysfunction under the ischemic condition and cells engraftment for ischemic treatment. Then, we will summarize and discuss the current knowledge about the effects and underlying mechanisms of cell therapy on BBB integrity after ischemic stroke. In particular, we will review the most recent studies in regard to the relationship between cell therapy and BBB in tissue plasminogen activator (t-PA)-mediated therapy and diabetic stroke.


2021 ◽  
Vol 134 (8) ◽  
Author(s):  
Mariana Castro Dias ◽  
Adolfo Odriozola Quesada ◽  
Sasha Soldati ◽  
Fabio Bösch ◽  
Isabelle Gruber ◽  
...  

ABSTRACT The migration of activated T cells across the blood–brain barrier (BBB) is a critical step in central nervous system (CNS) immune surveillance and inflammation. Whereas T cell diapedesis across the intact BBB seems to occur preferentially through the BBB cellular junctions, impaired BBB integrity during neuroinflammation is accompanied by increased transcellular T cell diapedesis. The underlying mechanisms directing T cells to paracellular versus transcellular sites of diapedesis across the BBB remain to be explored. By combining in vitro live-cell imaging of T cell migration across primary mouse brain microvascular endothelial cells (pMBMECs) under physiological flow with serial block-face scanning electron microscopy (SBF-SEM), we have identified BBB tricellular junctions as novel sites for T cell diapedesis across the BBB. Downregulated expression of tricellular junctional proteins or protein-based targeting of their interactions in pMBMEC monolayers correlated with enhanced transcellular T cell diapedesis, and abluminal presence of chemokines increased T cell diapedesis through tricellular junctions. Our observations assign an entirely novel role to BBB tricellular junctions in regulating T cell entry into the CNS. This article has an associated First Person interview with the first author of the paper.


2021 ◽  
Author(s):  
Bailey Hiles-Murison ◽  
Andrew Lavender ◽  
Mark Hackett ◽  
Joshua Armstrong ◽  
Michael Nesbit ◽  
...  

Abstract Repeated sub-concussive impact (e.g. soccer ball heading), a significantly lighter form of mild traumatic brain injury, is increasingly suggested to cumulatively alter brain structure and compromise neurobehavioural function in the long-term. However, the underlying mechanisms whereby repeated long-term sub-concussion induces cerebral structural and neurobehavioural changes are currently unknown. Here, we utilised an established rat model to investigate the effects of repeated sub-concussion on size of lateral ventricles, cerebrovascular blood-brain barrier (BBB) integrity, neuroinflammation, oxidative stress, and biochemical distribution. Following repeated sub-concussion for 2 weeks, the rats showed significantly enlarged lateral ventricles compared with the rats receiving sham-only procedure. The sub-concussive rats also presented significant BBB dysfunction in the cerebral cortex and hippocampal formation, whilst neuromotor function assessed by beamwalk and rotarod tests were comparable to the sham rats. Immunofluorescent and spectroscopic microscopy analyses revealed no significant changes in neuroinflammation, oxidative stress, lipid distribution or protein aggregation, within the hippocampus and cortex. These data collectively indicate that repeated sub-concussion for 2 weeks induce significant ventriculomegaly and BBB disruption, preceding neuromotor deficits.


2017 ◽  
Vol 214 (11) ◽  
pp. 3151-3169 ◽  
Author(s):  
Axel Montagne ◽  
Zhen Zhao ◽  
Berislav V. Zlokovic

The blood–brain barrier (BBB) keeps neurotoxic plasma-derived components, cells, and pathogens out of the brain. An early BBB breakdown and/or dysfunction have been shown in Alzheimer’s disease (AD) before dementia, neurodegeneration and/or brain atrophy occur. However, the role of BBB breakdown in neurodegenerative disorders is still not fully understood. Here, we examine BBB breakdown in animal models frequently used to study the pathophysiology of AD, including transgenic mice expressing human amyloid-β precursor protein, presenilin 1, and tau mutations, and apolipoprotein E, the strongest genetic risk factor for AD. We discuss the role of BBB breakdown and dysfunction in neurodegenerative process, pitfalls in BBB measurements, and how targeting the BBB can influence the course of neurological disorder. Finally, we comment on future approaches and models to better define, at the cellular and molecular level, the underlying mechanisms between BBB breakdown and neurodegeneration as a basis for developing new therapies for BBB repair to control neurodegeneration.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 245 ◽  
Author(s):  
Alessandro Parodi ◽  
Magdalena Rudzińska ◽  
Andrei Deviatkin ◽  
Surinder Soond ◽  
Alexey Baldin ◽  
...  

Brain tumors are characterized by very high mortality and, despite the continuous research on new pharmacological interventions, little therapeutic progress has been made. One of the main obstacles to improve current treatments is represented by the impermeability of the blood vessels residing within nervous tissue as well as of the new vascular net generating from the tumor, commonly referred to as blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), respectively. In this review, we focused on established and emerging strategies to overcome the blood-brain barrier to increase drug delivery for brain cancer. To date, there are three broad strategies being investigated to cross the brain vascular wall and they are conceived to breach, bypass, and negotiate the access to the nervous tissue. In this paper, we summarized these approaches highlighting their working mechanism and their potential impact on the quality of life of the patients as well as their current status of development.


2010 ◽  
Vol 78 (10) ◽  
pp. 4302-4310 ◽  
Author(s):  
Longkun Zhu ◽  
Ravi Maruvada ◽  
Adam Sapirstein ◽  
Kafait U. Malik ◽  
Marc Peters-Golden ◽  
...  

ABSTRACT Escherichia coli K1 meningitis occurs following penetration of the blood-brain barrier, but the underlying mechanisms involved in E. coli penetration of the blood-brain barrier remain incompletely understood. We have previously shown that host cytosolic phospholipase A2α (cPLA2α) contributes to E. coli invasion of human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier, but the underlying mechanisms remain unclear. cPLA2α selectively liberates arachidonic acid from membrane phospholipids. Here, we provide the first direct evidence that host 5-lipoxygenase and lipoxygenase products of arachidonic acid, cysteinyl leukotrienes (LTs), contribute to E. coli K1 invasion of HBMEC and penetration into the brain, and their contributions involve protein kinase C alpha (PKCα). These findings demonstrate that arachidonic acid metabolism regulates E. coli penetration of the blood-brain barrier, and studies are needed to further elucidate the mechanisms involved with metabolic products of arachidonic acid for their contribution to E. coli invasion of the blood-brain barrier.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 179 ◽  
Author(s):  
Keith D. Harris ◽  
Meital Weiss ◽  
Amotz Zahavi

In the CNS, minor changes in the concentration of neurotransmitters such as glutamate or dopamine can lead to neurodegenerative diseases. We present an evolutionary perspective on the function of neurotransmitter toxicity in the CNS. We hypothesize that neurotransmitters are selected because of their toxicity, which serves as a test of neuron quality and facilitates the selection of neuronal pathways. This perspective may offer additional explanations for the reduction of neurotransmitter concentration in the CNS with age, and suggest an additional role for the blood-brain barrier. It may also suggest a connection between the specific toxicity of the neurotransmitters released in a specific region of the CNS, and elucidate their role as chemicals that are optimal for testing the quality of cells in that region.


Sign in / Sign up

Export Citation Format

Share Document