scholarly journals Transcriptional landscapes of floral meristems in barley

2021 ◽  
Vol 7 (18) ◽  
pp. eabf0832
Author(s):  
J. Thiel ◽  
R. Koppolu ◽  
C. Trautewig ◽  
C. Hertig ◽  
S. M. Kale ◽  
...  

Organ development in plants predominantly occurs postembryonically through combinatorial activity of meristems; therefore, meristem and organ fate are intimately connected. Inflorescence morphogenesis in grasses (Poaceae) is complex and relies on a specialized floral meristem, called spikelet meristem, that gives rise to all other floral organs and ultimately the grain. The fate of the spikelet determines reproductive success and contributes toward yield-related traits in cereal crops. Here, we examined the transcriptional landscapes of floral meristems in the temperate crop barley (Hordeum vulgare L.) using RNA-seq of laser capture microdissected tissues from immature, developing floral structures. Our unbiased, high-resolution approach revealed fundamental regulatory networks, previously unknown pathways, and key regulators of barley floral fate and will equally be indispensable for comparative transcriptional studies of grass meristems.

2021 ◽  
Author(s):  
Hailong Yang ◽  
Kate Nukunya ◽  
Queying Ding ◽  
Beth E. Thompson

Flowers are produced by floral meristems, groups of stem cells that give rise to floral organs. In grasses, including the major cereal crops, flowers (florets) are contained in spikelets, which contain one to many florets, depending on the species. Importantly, not all grass florets are developmentally equivalent, and one or more florets are often sterile or abort in each spikelet. Members of the Andropogoneae tribe, including maize, produce spikelets with two florets; the upper and lower florets are usually dimorphic and the lower floret greatly reduced compared to the upper floret. In maize ears, early development appears identical in both florets but the lower floret ultimately aborts. To gain insight into the functional differences between florets of different fates, we used laser capture microdissection coupled with RNA-seq to globally examine gene expression in upper and lower floral meristems in maize. Differentially expressed genes were involved in hormone regulation, cell wall, sugar and energy homeostasis. Furthermore, cell wall modifications and sugar accumulation differed between the upper and lower florets. Finally, we identified a novel boundary domain between upper and lower florets, which we hypothesize is important for floral meristem activity. We propose a model in which growth is suppressed in the lower floret by limiting sugar availability and upregulating genes involved in growth repression. This growth repression module may also regulate floret fertility in other grasses and potentially be modulated to engineer more productive cereal crops.


Genomics Data ◽  
2014 ◽  
Vol 2 ◽  
pp. 242-245 ◽  
Author(s):  
Dhiraj Thakare ◽  
Ruolin Yang ◽  
Joshua G. Steffen ◽  
Junpeng Zhan ◽  
Dongfang Wang ◽  
...  

2019 ◽  
Vol 317 (5) ◽  
pp. L556-L568 ◽  
Author(s):  
Jun Ding ◽  
Farida Ahangari ◽  
Celia R. Espinoza ◽  
Divya Chhabra ◽  
Teodora Nicola ◽  
...  

A comprehensive understanding of the dynamic regulatory networks that govern postnatal alveolar lung development is still lacking. To construct such a model, we profiled mRNA, microRNA, DNA methylation, and proteomics of developing murine alveoli isolated by laser capture microdissection at 14 predetermined time points. We developed a detailed comprehensive and interactive model that provides information about the major expression trajectories, the regulators of specific key events, and the impact of epigenetic changes. Intersecting the model with single-cell RNA-Seq data led to the identification of active pathways in multiple or individual cell types. We then constructed a similar model for human lung development by profiling time-series human omics data sets. Several key pathways and regulators are shared between the reconstructed models. We experimentally validated the activity of a number of predicted regulators, leading to new insights about the regulation of innate immunity during lung development.


2021 ◽  
Author(s):  
Pavel V. Mazin ◽  
Philipp Khaitovich ◽  
Margarida Cardoso-Moreira ◽  
Henrik Kaessmann

AbstractAlternative splicing (AS) is pervasive in mammalian genomes, yet cross-species comparisons have been largely restricted to adult tissues and the functionality of most AS events remains unclear. We assessed AS patterns across pre- and postnatal development of seven organs in six mammals and a bird. Our analyses revealed that developmentally dynamic AS events, which are especially prevalent in the brain, are substantially more conserved than nondynamic ones. Cassette exons with increasing inclusion frequencies during development show the strongest signals of conserved and regulated AS. Newly emerged cassette exons are typically incorporated late in testis development, but those retained during evolution are predominantly brain specific. Our work suggests that an intricate interplay of programs controlling gene expression levels and AS is fundamental to organ development, especially for the brain and heart. In these regulatory networks, AS affords substantial functional diversification of genes through the generation of tissue- and time-specific isoforms from broadly expressed genes.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii311-iii312
Author(s):  
Bernhard Englinger ◽  
Johannes Gojo ◽  
Li Jiang ◽  
Jens M Hübner ◽  
McKenzie L Shaw ◽  
...  

Abstract Ependymoma represents a heterogeneous disease affecting the entire neuraxis. Extensive molecular profiling efforts have identified molecular ependymoma subgroups based on DNA methylation. However, the intratumoral heterogeneity and developmental origins of these groups are only partially understood, and effective treatments are still lacking for about 50% of patients with high-risk tumors. We interrogated the cellular architecture of ependymoma using single cell/nucleus RNA-sequencing to analyze 24 tumor specimens across major molecular subgroups and anatomic locations. We additionally analyzed ten patient-derived ependymoma cell models and two patient-derived xenografts (PDXs). Interestingly, we identified an analogous cellular hierarchy across all ependymoma groups, originating from undifferentiated neural stem cell-like populations towards different degrees of impaired differentiation states comprising neuronal precursor-like, astro-glial-like, and ependymal-like tumor cells. While prognostically favorable ependymoma groups predominantly harbored differentiated cell populations, aggressive groups were enriched for undifferentiated subpopulations. Projection of transcriptomic signatures onto an independent bulk RNA-seq cohort stratified patient survival even within known molecular groups, thus refining the prognostic power of DNA methylation-based profiling. Furthermore, we identified novel potentially druggable targets including IGF- and FGF-signaling within poorly prognostic transcriptional programs. Ependymoma-derived cell models/PDXs widely recapitulated the transcriptional programs identified within fresh tumors and are leveraged to validate identified target genes in functional follow-up analyses. Taken together, our analyses reveal a developmental hierarchy and transcriptomic context underlying the biologically and clinically distinct behavior of ependymoma groups. The newly characterized cellular states and underlying regulatory networks could serve as basis for future therapeutic target identification and reveal biomarkers for clinical trials.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Milda Mickutė ◽  
Kotryna Kvederavičiūtė ◽  
Aleksandr Osipenko ◽  
Raminta Mineikaitė ◽  
Saulius Klimašauskas ◽  
...  

Abstract Background Targeted installation of designer chemical moieties on biopolymers provides an orthogonal means for their visualisation, manipulation and sequence analysis. Although high-throughput RNA sequencing is a widely used method for transcriptome analysis, certain steps, such as 3′ adapter ligation in strand-specific RNA sequencing, remain challenging due to structure- and sequence-related biases introduced by RNA ligases, leading to misrepresentation of particular RNA species. Here, we remedy this limitation by adapting two RNA 2′-O-methyltransferases from the Hen1 family for orthogonal chemo-enzymatic click tethering of a 3′ sequencing adapter that supports cDNA production by reverse transcription of the tagged RNA. Results We showed that the ssRNA-specific DmHen1 and dsRNA-specific AtHEN1 can be used to efficiently append an oligonucleotide adapter to the 3′ end of target RNA for sequencing library preparation. Using this new chemo-enzymatic approach, we identified miRNAs and prokaryotic small non-coding sRNAs in probiotic Lactobacillus casei BL23. We found that compared to a reference conventional RNA library preparation, methyltransferase-Directed Orthogonal Tagging and RNA sequencing, mDOT-seq, avoids misdetection of unspecific highly-structured RNA species, thus providing better accuracy in identifying the groups of transcripts analysed. Our results suggest that mDOT-seq has the potential to advance analysis of eukaryotic and prokaryotic ssRNAs. Conclusions Our findings provide a valuable resource for studies of the RNA-centred regulatory networks in Lactobacilli and pave the way to developing novel transcriptome and epitranscriptome profiling approaches in vitro and inside living cells. As RNA methyltransferases share the structure of the AdoMet-binding domain and several specific cofactor binding features, the basic principles of our approach could be easily translated to other AdoMet-dependent enzymes for the development of modification-specific RNA-seq techniques.


Author(s):  
Aniket Bhattacharya ◽  
Vineet Jha ◽  
Khushboo Singhal ◽  
Mahar Fatima ◽  
Dayanidhi Singh ◽  
...  

Abstract Alu repeats contribute to phylogenetic novelties in conserved regulatory networks in primates. Our study highlights how exonized Alus could nucleate large-scale mRNA-miRNA interactions. Using a functional genomics approach, we characterize a transcript isoform of an orphan gene, CYP20A1 (CYP20A1_Alu-LT) that has exonization of 23 Alus in its 3’UTR. CYP20A1_Alu-LT, confirmed by 3’RACE, is an outlier in length (9 kb 3’UTR) and widely expressed. Using publically available datasets, we demonstrate its expression in higher primates and presence in single nucleus RNA-seq of 15928 human cortical neurons. miRanda predicts ∼4700 miRNA recognition elements (MREs) for ∼1000 miRNAs, primarily originated within these 3’UTR-Alus. CYP20A1_Alu-LT could be a potential multi-miRNA sponge as it harbors ≥10 MREs for 140 miRNAs and has cytosolic localization. We further tested whether expression of CYP20A1_Alu-LT correlates with mRNAs harboring similar MRE targets. RNA-seq with conjoint miRNA-seq analysis was done in primary human neurons where we observed CYP20A1_Alu-LT to be downregulated during heat shock response and upregulated in HIV1-Tat treatment. 380 genes were positively correlated with its expression (significantly downregulated in heat shock and upregulated in Tat) and they harbored MREs for nine expressed miRNAs which were also enriched in CYP20A1_Alu-LT. MREs were significantly enriched in these 380 genes compared to random sets of differentially expressed genes (p = 8.134e-12). Gene ontology suggested involvement of these genes in neuronal development and hemostasis pathways thus proposing a novel component of Alu-miRNA mediated transcriptional modulation that could govern specific physiological outcomes in higher primates.


2013 ◽  
Vol 368 (1620) ◽  
pp. 20120361 ◽  
Author(s):  
Jim R. Hughes ◽  
Karen M. Lower ◽  
Ian Dunham ◽  
Stephen Taylor ◽  
Marco De Gobbi ◽  
...  

We have combined the circular chromosome conformation capture protocol with high-throughput, genome-wide sequence analysis to characterize the cis -acting regulatory network at a single locus. In contrast to methods which identify large interacting regions (10–1000 kb), the 4C approach provides a comprehensive, high-resolution analysis of a specific locus with the aim of defining, in detail, the cis -regulatory elements controlling a single gene or gene cluster. Using the human α-globin locus as a model, we detected all known local and long-range interactions with this gene cluster. In addition, we identified two interactions with genes located 300 kb (NME4) and 625 kb (FAM173a) from the α-globin cluster.


Patterns ◽  
2021 ◽  
Vol 2 (9) ◽  
pp. 100332
Author(s):  
N. Alexia Raharinirina ◽  
Felix Peppert ◽  
Max von Kleist ◽  
Christof Schütte ◽  
Vikram Sunkara

2021 ◽  
Vol 22 (13) ◽  
pp. 7029
Author(s):  
Cai-Yun Xiong ◽  
Qing-You Gong ◽  
Hu Pei ◽  
Chang-Jian Liao ◽  
Rui-Chun Yang ◽  
...  

In maize, the ear shank is a short branch that connects the ear to the stalk. The length of the ear shank mainly affects the transportation of photosynthetic products to the ear, and also influences the dehydration of the grain by adjusting the tightness of the husks. However, the molecular mechanisms of maize shank elongation have rarely been described. It has been reported that the maize ear shank length is a quantitative trait, but its genetic basis is still unclear. In this study, RNA-seq was performed to explore the transcriptional dynamics and determine the key genes involved in maize shank elongation at four different developmental stages. A total of 8145 differentially expressed genes (DEGs) were identified, including 729 transcription factors (TFs). Some important genes which participate in shank elongation were detected via function annotation and temporal expression pattern analyses, including genes related to signal transduction hormones (auxin, brassinosteroids, gibberellin, etc.), xyloglucan and xyloglucan xyloglucosyl transferase, and transcription factor families. The results provide insights into the genetic architecture of maize ear shanks and developing new varieties with ideal ear shank lengths, enabling adjustments for mechanized harvesting in the future.


Sign in / Sign up

Export Citation Format

Share Document