scholarly journals The epigenetic factor FVE orchestrates cytoplasmic SGS3-DRB4-DCL4 activities to promote transgene silencing in Arabidopsis

2021 ◽  
Vol 7 (32) ◽  
pp. eabf3898
Author(s):  
Di Sun ◽  
Yanjun Li ◽  
Zeyang Ma ◽  
Xingxing Yan ◽  
Niankui Li ◽  
...  

Posttranscriptional gene silencing (PTGS) is a regulatory mechanism to suppress undesired transcripts. Here, we identified Flowering locus VE (FVE), a well-known epigenetic component, as a new player in cytoplasmic PTGS. Loss-of-function fve mutations substantially reduced the accumulation of transgene-derived small interfering RNAs (siRNAs). FVE interacts with suppressor of gene silencing 3 (SGS3), a master component in PTGS. FVE promotes SGS3 homodimerization that is essential for its function. FVE can bind to single-stranded RNA and double-stranded RNA (dsRNA) with moderate affinities, while its truncated form FVE-8 has a significantly increased binding affinity to dsRNA. These affinities affect the association and channeling of SGS3-RNA to downstream dsRNA binding protein 4 (DRB4)/Dicer-like protein 2/4 (DCL2/4) complexes. Hence, FVE, but not FVE-8, biochemically enhances the DRB4/DCL2/4 activity in vitro. We surmise that FVE promotes production of transgene-derived siRNAs through concertedly tuning SGS3-DRB4/DCL2/4 functions. Thus, this study revealed a noncanonical role of FVE in PTGS.

2020 ◽  
Vol 48 (7) ◽  
pp. 3906-3921 ◽  
Author(s):  
Volker Nitschko ◽  
Stefan Kunzelmann ◽  
Thomas Fröhlich ◽  
Georg J Arnold ◽  
Klaus Förstemann

Abstract RNA interference targets aberrant transcripts with cognate small interfering RNAs, which derive from double-stranded RNA precursors. Several functional screens have identified Drosophila blanks/lump (CG10630) as a facilitator of RNAi, yet its molecular function has remained unknown. The protein carries two dsRNA binding domains (dsRBD) and blanks mutant males have a spermatogenesis defect. We demonstrate that blanks selectively boosts RNAi triggered by dsRNA of nuclear origin. Blanks binds dsRNA via its second dsRBD in vitro, shuttles between nucleus and cytoplasm and the abundance of siRNAs arising at many sites of convergent transcription is reduced in blanks mutants. Since features of nascent RNAs - such as introns and transcription beyond the polyA site – contribute to the small RNA pool, we propose that Blanks binds dsRNA formed by cognate nascent RNAs in the nucleus and fosters its export to the cytoplasm for dicing. We refer to the resulting small RNAs as blanks exported siRNAs (bepsiRNAs). While bepsiRNAs were fully dependent on RNA binding to the second dsRBD of blanks in transgenic flies, male fertility was not. This is consistent with a previous report that linked fertility to the first dsRBD of Blanks. The role of blanks in spermatogenesis appears thus unrelated to its role in dsRNA export.


2006 ◽  
Vol 2006 ◽  
pp. 1-13 ◽  
Author(s):  
Letizia Venturini ◽  
Matthias Eder ◽  
Michaela Scherr

In the past few years, the discovery of RNA-mediated gene silencing mechanisms, like RNA interference (RNAi), has revolutionized our understanding of eukaryotic gene expression. These mechanisms are activated by double-stranded RNA (dsRNA) and mediate gene silencing either by inducing the sequence-specific degradation of complementary mRNA or by inhibiting mRNA translation. RNAi now provides a powerful experimental tool to elucidate gene function in vitro and in vivo, thereby opening new exciting perspectives in the fields of molecular analysis and eventually therapy of several diseases such as infections and cancer. In hematology, numerous studies have described the successful application of RNAi to better define the role of oncogenic fusion proteins in leukemogenesis and to explore therapeutic approaches in hematological malignancies. In this review, we highlight recent advances and caveats relating to the application of this powerful new methodology to hematopoiesis.


2010 ◽  
Vol 108 (1) ◽  
pp. 409-414 ◽  
Author(s):  
Paul Hoffer ◽  
Sergey Ivashuta ◽  
Olga Pontes ◽  
Alexa Vitins ◽  
Craig Pikaard ◽  
...  

In plants, small interfering RNAs (siRNAs) with sequence homology to transcribed regions of genes can guide the sequence-specific degradation of corresponding mRNAs, leading to posttranscriptional gene silencing (PTGS). The current consensus is that siRNA-mediated PTGS occurs primarily in the cytoplasm where target mRNAs are localized and translated into proteins. However, expression of an inverted-repeat double-stranded RNA corresponding to the soybeanFAD2-1Adesaturase intron is sufficient to silenceFAD2-1, implicating nuclear precursor mRNA (pre-mRNA) rather than cytosolic mRNA as the target of PTGS. SilencingFAD2-1using intronic or 3′-UTR sequences does not affect transcription rates of the target genes but results in the strong reduction of target transcript levels in the nucleus. Moreover, siRNAs corresponding to pre-mRNA–specific sequences accumulate in the nucleus. In Arabidopsis, we find that two enzymes involved in PTGS, Dicer-like 4 and RNA-dependent RNA polymerase 6, are localized in the nucleus. Collectively, these results demonstrate that siRNA-directed RNA degradation can take place in the nucleus, suggesting the need for a more complex view of the subcellular compartmentation of PTGS in plants.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Masahiro Naganuma ◽  
Hisashi Tadakuma ◽  
Yukihide Tomari

AbstractDrosophila Dicer-2 (Dcr-2) produces small interfering RNAs from long double-stranded RNAs (dsRNAs), playing an essential role in antiviral RNA interference. The dicing reaction by Dcr-2 is enhanced by Loquacious-PD (Loqs-PD), a dsRNA-binding protein that partners with Dcr-2. Previous biochemical analyses have proposed that Dcr-2 uses two distinct—processive or distributive—modes of cleavage by distinguishing the terminal structures of dsRNAs and that Loqs-PD alters the terminal dependence of Dcr-2. However, the direct evidence for this model is lacking, as the dynamic movement of Dcr-2 along dsRNAs has not been traced. Here, by utilizing single-molecule imaging, we show that the terminal structures of long dsRNAs and the presence or absence of Loqs-PD do not essentially change Dcr-2’s cleavage mode between processive and distributive, but rather simply affect the probability for Dcr-2 to undergo the cleavage reaction. Our results provide a refined model for how the dicing reaction by Dcr-2 is regulated.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 361
Author(s):  
Rui-Zhu Shi ◽  
Yuan-Qing Pan ◽  
Li Xing

The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1187
Author(s):  
Michael Wassenegger ◽  
Athanasios Dalakouras

Viroids are plant pathogenic, circular, non-coding, single-stranded RNAs (ssRNAs). Members of the Pospiviroidae family replicate in the nucleus of plant cells through double-stranded RNA (dsRNA) intermediates, thus triggering the host’s RNA interference (RNAi) machinery. In plants, the two RNAi pillars are Post-Transcriptional Gene Silencing (PTGS) and RNA-directed DNA Methylation (RdDM), and the latter has the potential to trigger Transcriptional Gene Silencing (TGS). Over the last three decades, the employment of viroid-based systems has immensely contributed to our understanding of both of these RNAi facets. In this review, we highlight the role of Pospiviroidae in the discovery of RdDM, expound the gradual elucidation through the years of the diverse array of RdDM’s mechanistic details and propose a revised RdDM model based on the cumulative amount of evidence from viroid and non-viroid systems.


1998 ◽  
Vol 18 (12) ◽  
pp. 7009-7019 ◽  
Author(s):  
Rekha C. Patel ◽  
Ganes C. Sen

ABSTRACT The roles of protein dimerization and double-stranded RNA (dsRNA) binding in the biochemical and cellular activities of PKR, the dsRNA-dependent protein kinase, were investigated. We have previously shown that both properties of the protein are mediated by the same domain. Here we show that dimerization is mediated by hydrophobic residues present on one side of an amphipathic α-helical structure within this domain. Appropriate substitution mutations of residues on that side produced mutants with increased or decreased dimerization activities. Using these mutants, we demonstrated that dimerization is not essential for dsRNA binding. However, enhancing dimerization artificially, by providing an extraneous dimerization domain, increased dsRNA binding of both wild-type and mutant proteins. In vitro, the dimerization-defective mutants could not be activated by dsRNA but were activated normally by heparin. In Saccharomyces cerevisiae, unlike wild-type PKR, these mutants could not inhibit cell growth and the dsRNA-binding domain of the dimerization-defective mutants could not prevent the antigrowth effect of wild-type PKR. These results demonstrate the biological importance of the dimerization properties of PKR.


Science ◽  
2015 ◽  
Vol 348 (6230) ◽  
pp. 120-123 ◽  
Author(s):  
Xinyan Zhang ◽  
Ying Zhu ◽  
Xiaodan Liu ◽  
Xinyu Hong ◽  
Yang Xu ◽  
...  

Plant immunity against foreign gene invasion takes advantage of posttranscriptional gene silencing (PTGS). How plants elaborately avert inappropriate PTGS of endogenous coding genes remains unclear. We demonstrate in Arabidopsis that both 5′-3′ and 3′-5′ cytoplasmic RNA decay pathways act as repressors of transgene and endogenous PTGS. Disruption of bidirectional cytoplasmic RNA decay leads to pleiotropic developmental defects and drastic transcriptomic alterations, which are substantially rescued by PTGS mutants. Upon dysfunction of bidirectional RNA decay, a large number of 21- to 22-nucleotide endogenous small interfering RNAs are produced from coding transcripts, including multiple microRNA targets, which could interfere with their cognate gene expression and functions. This study highlights the risk of unwanted PTGS and identifies cytoplasmic RNA decay pathways as safeguards of plant transcriptome and development.


Author(s):  
Evelyn C Mollocana-Lara ◽  
Ming Ni ◽  
Spiros N Agathos ◽  
Fernando A Gonzales-Zubiate

Abstract Although the study of ribonucleic acid (RNA) therapeutics started decades ago, for many years, this field of research was overshadowed by the growing interest in DNA-based therapies. Nowadays, the role of several types of RNA in cell regulation processes and the development of various diseases have been elucidated, and research in RNA therapeutics is back with force. This short literature review aims to present general aspects of many of the molecules currently used in RNA therapeutics, including in vitro transcribed mRNA (IVT mRNA), antisense oligonucleotides (ASOs), aptamers, small interfering RNAs (siRNAs), and microRNAs (miRNAs). In addition, we describe the state of the art of technologies applied for synthetic RNA manufacture and delivery. Likewise, we detail the RNA-based therapies approved by the FDA so far, as well as the ongoing clinical investigations. As a final point, we highlight the current and potential advantages of working on RNA-based therapeutics and how these could lead to a new era of accessible and personalized healthcare.


Sign in / Sign up

Export Citation Format

Share Document