scholarly journals Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids

2021 ◽  
Vol 7 (18) ◽  
pp. eabg0153
Author(s):  
Elizabeth Trembath-Reichert ◽  
Sunita R. Shah Walter ◽  
Marc Alec Fontánez Ortiz ◽  
Patrick D. Carter ◽  
Peter R. Girguis ◽  
...  

Biogeochemical processes occurring in fluids that permeate oceanic crust make measurable contributions to the marine carbon cycle, but quantitative assessments of microbial impacts on this vast, subsurface carbon pool are lacking. We provide bulk and single-cell estimates of microbial biomass production from carbon and nitrogen substrates in cool, oxic basement fluids from the western flank of the Mid-Atlantic Ridge. The wide range in carbon and nitrogen incorporation rates indicates a microbial community well poised for dynamic conditions, potentially anabolizing carbon and nitrogen at rates ranging from those observed in subsurface sediments to those found in on-axis hydrothermal vent environments. Bicarbonate incorporation rates were highest where fluids are most isolated from recharging bottom seawater, suggesting that anabolism of inorganic carbon may be a potential strategy for supplementing the ancient and recalcitrant dissolved organic carbon that is prevalent in the globally distributed subseafloor crustal environment.

2021 ◽  
Vol 12 ◽  
Author(s):  
Hans Jacquemyn ◽  
Rein Brys ◽  
Michael Waud ◽  
Alexandra Evans ◽  
Tomáš Figura ◽  
...  

Partial mycoheterotrophy, the ability of plants to obtain carbon from fungi throughout their life cycle in combination with photosynthesis, appears to be more common within the Plant Kingdom than previously anticipated. Recent studies using stable isotope analyses have indicated that isotope signatures in partially mycoheterotrophic plants vary widely among species, but the relative contributions of family- or species-specific characteristics and the identity of the fungal symbionts to the observed differences remain unclear. Here, we investigated in detail mycorrhizal communities and isotopic signatures in four co-occurring terrestrial orchids (Platanthera chlorantha, Epipactis helleborine, E. neglecta and the mycoheterotrophic Neottia nidus-avis). All investigated species were mycorrhizal generalists (i.e., associated with a large number of fungi simultaneously), but mycorrhizal communities differed significantly between species. Mycorrhizal communities associating with the two Epipactis species consisted of a wide range of fungi belonging to different families, whereas P. chlorantha and N. nidus-avis associated mainly with Ceratobasidiaceae and Sebacinaceae species, respectively. Isotopic signatures differed significantly between both Epipactis species, with E. helleborine showing near autotrophic behavior and E. neglecta showing significant enrichment in both carbon and nitrogen. No significant differences in photosynthesis and stomatal conductance were observed between the two partially mycoheterotrophic orchids, despite significant differences in isotopic signatures. Our results demonstrate that partially mycoheterotrophic orchids of the genus Epipactis formed mycorrhizas with a wide diversity of fungi from different fungal families, but variation in mycorrhizal community composition was not related to isotope signatures and thus transfer of C and N to the plant. We conclude that the observed differences in isotope signatures between E. helleborine and E. neglecta cannot solely be explained by differences in mycorrhizal communities, but most likely reflect a combination of inherent physiological differences and differences in mycorrhizal communities.


2018 ◽  
Author(s):  
Bhavya P. Sadanandan ◽  
Jang Han Lee ◽  
Ho Won Lee ◽  
Jae Joong Kaang ◽  
Jae Hyung Lee ◽  
...  

Abstract. Carbon and nitrogen uptake rates by small phytoplankton (0.7–5 μm) in the Kara, Laptev, and East Siberian seas in the Arctic Ocean were quantified using in situ isotope labelling experiments for the first time as part of the NABOS (Nansen and Amundsen Basins Observational System) program during August 21 to September 22, 2013. The depth integrated C, NO3−, and NH4+ uptake rates by small phytoplankton showed a wide range from 0.54 to 15.96 mg C m−2 h−1, 0.05 to 1.02 and 0.11 to 3.73 mg N m−2 h−1, respectively. The contributions of small phytoplankton towards the total C, NO3−, and NH4+ was varied from 24 to 89 %, 32 to 89 %, and 28 to 89 %, respectively. The turnover times for NO3− and NH4+ by small phytoplankton during the present study point towards the longer residence times (years) of the nutrients in the deeper waters, particularly for NO3−. Relatively, higher C and N uptake rates by small phytoplankton obtained during the present study at locations with less sea ice concentrations points towards the possibility of small phytoplankton thrive under sea ice retreat under warming conditions. The high contributions of small phytoplankton towards the total carbon and nitrogen uptake rates suggest capability of small size autotrophs to withstand in the adverse hydrographic conditions introduced by climate change.


2016 ◽  
Vol 82 (9) ◽  
pp. 2854-2861 ◽  
Author(s):  
Omri M. Finkel ◽  
Tom O. Delmont ◽  
Anton F. Post ◽  
Shimshon Belkin

ABSTRACTThe leaves ofTamarix aphylla, a globally distributed, salt-secreting desert tree, are dotted with alkaline droplets of high salinity. To successfully inhabit these organic carbon-rich droplets, bacteria need to be adapted to multiple stress factors, including high salinity, high alkalinity, high UV radiation, and periodic desiccation. To identify genes that are important for survival in this harsh habitat, microbial community DNA was extracted from the leaf surfaces of 10Tamarix aphyllatrees along a 350-km longitudinal gradient. Shotgun metagenomic sequencing, contig assembly, and binning yielded 17 genome bins, six of which were >80% complete. These genomic bins, representing three phyla (Proteobacteria,Bacteroidetes, andFirmicutes), were closely related to halophilic and alkaliphilic taxa isolated from aquatic and soil environments. Comparison of these genomic bins to the genomes of their closest relatives revealed functional traits characteristic of bacterial populations inhabiting theTamarixphyllosphere, independent of their taxonomic affiliation. These functions, most notably light-sensing genes, are postulated to represent important adaptations toward colonization of this habitat.IMPORTANCEPlant leaves are an extensive and diverse microbial habitat, forming the main interface between solar energy and the terrestrial biosphere. There are hundreds of thousands of plant species in the world, exhibiting a wide range of morphologies, leaf surface chemistries, and ecological ranges. In order to understand the core adaptations of microorganisms to this habitat, it is important to diversify the type of leaves that are studied. This study provides an analysis of the genomic content of the most abundant bacterial inhabitants of the globally distributed, salt-secreting desert treeTamarix aphylla. Draft genomes of these bacteria were assembled, using the culture-independent technique of assembly and binning of metagenomic data. Analysis of the genomes reveals traits that are important for survival in this habitat, most notably, light-sensing and light utilization genes.


2019 ◽  
Vol 15 (4) ◽  
pp. 20190004 ◽  
Author(s):  
Amanda M. Barker ◽  
Douglas H. Adams ◽  
William B. Driggers ◽  
Bryan S. Frazier ◽  
David S. Portnoy

Hybridization between closely related species has been documented across a wide range of taxa but has not been well studied in elasmobranchs. Hammerhead sharks have drawn global conservation concern because they experience some of the highest mortality rates among sharks when interacting with fisheries. Here we report on the detection of hybrids between the globally distributed scalloped hammerhead ( Sphyrna lewini ) and recently described Carolina hammerhead ( S. gilberti ) which are only known from the western Atlantic Ocean. Using a genomics approach, 10 first-generation hybrids and 15–17 backcrosses were detected from 554 individuals. The identification of backcrosses demonstrates hybrids are viable, and all backcrosses but one involved a scalloped hammerhead. All hybrids but one possessed Carolina hammerhead mtDNA, indicating sex-biased gene flow between species. Repeated hybridization and backcrossing with scalloped hammerheads could lead to the loss of endemic Carolina hammerheads.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1876
Author(s):  
Magdalena Massalska ◽  
Wlodzimierz Maslinski ◽  
Marzena Ciechomska

The development of biological disease-modifying antirheumatic drugs (bDMARDs) and target synthetic DMARDs (tsDMARDs), also known as small molecule inhibitors, represent a breakthrough in rheumatoid arthritis (RA) treatment. The tsDMARDs are a large family of small molecules targeting mostly the several types of kinases, which are essential in downstream signaling of pro-inflammatory molecules. This review highlights current challenges associated with the treatment of RA using small molecule inhibitors targeting intracellular JAKs/MAPKs/NF-κB/SYK-BTK signaling pathways. Indeed, we have provided the latest update on development of small molecule inhibitors, their clinical efficacy and safety as a strategy for RA treatment. On the other hand, we have highlighted the risk and adverse effects of tsDMARDs administration including, among others, infections and thromboembolism. Therefore, performance of blood tests or viral infection screening should be recommended before the tsDMARDs administration. Interestingly, recent events of SARS-CoV-2 outbreak have demonstrated the potential use of small molecule inhibitors not only in RA treatment, but also in fighting COVID-19 via blocking the viral entry, preventing of hyperimmune activation and reducing cytokine storm. Thus, small molecule inhibitors, targeting wide range of pro-inflammatory singling pathways, may find wider implications not only for the management of RA but also in the controlling of COVID-19.


2019 ◽  
Vol 66 (3-4) ◽  
pp. 253-263 ◽  
Author(s):  
Shai Meiri

Geckos are a hyper-diverse, ancient, and globally distributed group. They have diverged early from other squamates and thus can be expected to differ from them along multiple ecological, life history, and biogeographic axes. I review a wide range of gecko traits, comparing them to those of other lizard taxa, to identify the unique, and unifying, attributes of geckos among lizards, based on comprehensive databases of lizard distributions and biological attributes. Few traits completely separate geckos from other lizard taxa, yet they differ to a large degree along many axes: they are more restricted to low latitudes and altitudes, are especially diverse on islands, but relatively scarce in America. They are small lizards, that lay small, fixed clutch sizes, for which they compensate only partially by laying frequently. Because they mature at relatively similar ages and have similar lifespans to other lizards, geckos produce fewer offspring over a year, and over their lifetimes, perhaps implying that they enjoy higher survival rates. While being the only large lizard clade of predominantly nocturnal lizards a large proportion of species is active by day. Gecko body temperatures and preferred temperatures are lower than those of other lizards –even when they are compared to lizards with similar activity times. Worryingly, most geckos have small ranges that often reside completely outside of protected areas – much more frequently than in other reptile and vertebrate taxa.


Sign in / Sign up

Export Citation Format

Share Document