scholarly journals Cancer-associated MSC drive tumor immune exclusion and resistance to immunotherapy, which can be overcome by Hedgehog inhibition

2021 ◽  
Vol 7 (46) ◽  
Author(s):  
Sandra Cascio ◽  
Chelsea Chandler ◽  
Linan Zhang ◽  
Sarah Sinno ◽  
Bingsi Gao ◽  
...  
Keyword(s):  
2021 ◽  
Vol 9 (5) ◽  
pp. e001772
Author(s):  
John A Ligon ◽  
Woonyoung Choi ◽  
Gady Cojocaru ◽  
Wei Fu ◽  
Emily Han-Chung Hsiue ◽  
...  

BackgroundCurrent therapy for osteosarcoma pulmonary metastases (PMs) is ineffective. The mechanisms that prevent successful immunotherapy in osteosarcoma are incompletely understood. We investigated the tumor microenvironment of metastatic osteosarcoma with the goal of harnessing the immune system as a therapeutic strategy.Methods66 osteosarcoma tissue specimens were analyzed by immunohistochemistry (IHC) and immune markers were digitally quantified. Tumor-infiltrating lymphocytes (TILs) from 25 specimens were profiled by functional cytometry. Comparative transcriptomic studies of distinct tumor-normal lung ‘PM interface’ and ‘PM interior’ regions from 16 PMs were performed. Clinical follow-up (median 24 months) was available from resection.ResultsIHC revealed a statistically significantly higher concentration of TILs expressing immune checkpoint and immunoregulatory molecules in PMs compared with primary bone tumors (including programmed cell death 1 (PD-1), programmed death ligand 1 (PD-L1), lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and indoleamine 2,3-dioxygenase (IDO1). Remarkably, these lymphocytes are excluded at the PM interface compared with PM interior. TILs from PMs exhibited significantly higher amounts of PD-1 and LAG-3 and functional cytokines including interferon-γ (IFNγ) by flow cytometry. Gene expression profiling further confirmed the presence of CD8 and CD4 lymphocytes concentrated at the PM interface, along with upregulation of immunoregulatory molecules and IFNγ-driven genes in the same region. We further discovered a strong alternatively activated macrophage signature throughout the entire PMs along with a polymorphonuclear myeloid-derived suppressor cell signature focused at the PM interface. Expression of PD-L1, LAG-3, and colony-stimulating factor 1 receptor (CSF1R) at the PM interface was associated with significantly worse progression-free survival (PFS), while gene sets indicative of productive T cell immune responses (CD8 T cells, T cell survival, and major histocompatibility complex class 1 expression) were associated with significantly improved PFS.ConclusionsOsteosarcoma PMs exhibit immune exclusion characterized by the accumulation of TILs at the PM interface. These TILs produce effector cytokines, suggesting their capability of activation and recognition of tumor antigens. Our findings suggest cooperative immunosuppressive mechanisms in osteosarcoma PMs including immune checkpoint molecule expression and the presence of immunosuppressive myeloid cells. We identify cellular and molecular signatures that are associated with patient outcomes, which could be exploited for successful immunotherapy.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2509-2509
Author(s):  
Todd Michael Bauer ◽  
Chia-Chi Lin ◽  
Richard Greil ◽  
Maria-Elisabeth Goebeler ◽  
Marie Luise Huetter-Kroenke ◽  
...  

2509 Background: TGF-β plays a key role in regulating the tumor microenvironment. Emerging evidence suggests TGF-β is a key activator of cancer-associated fibroblasts, leading to fibrotic network development and immune exclusion. Preclinical data in murine models showed that TGF-β blockade alleviates intratumoral fibrosis, augmenting the efficacy of PD-1 immunotherapy. NIS793 is a human IgG2 mAb that binds to TGF-β. This study investigates NIS793 + spartalizumab in pts with advanced solid tumors. Methods: Pts initially received NIS793 (0.3–1 mg/kg Q3W) monotherapy; following evaluation of two dose levels, dose escalation continued with NIS793 + spartalizumab (NIS793 0.3–30 mg/kg Q3W + spartalizumab 300 mg Q3W; or NIS793 20–30 mg/kg Q2W + spartalizumab 400 mg Q4W) in pts with/without prior anti-PD-(L)1 therapy. In dose expansion, pts with non-small cell lung cancer (NSCLC) resistant to prior anti-PD-(L)1 or pts with microsatellite stable colorectal cancer (MSS-CRC) were treated at the recommended dose for expansion (RDE). Paired tumor biopsies were required from all pts. The primary objectives were to characterize safety and tolerability of the combination and determine the RDE. Results: By December 1, 2020, 60 pts were treated in the dose-escalation phase, mainly with NIS793 + spartalizumab (n = 49), and 60 pts were treated in dose expansion (MSS-CRC: n = 40; NSCLC: n = 20). Two pts were still receiving treatment. No dose-limiting toxicities were observed, and the RDE was established as 30 mg/kg (2100 mg) NIS793 + 300 mg spartalizumab Q3W. Overall 50% pts experienced ≥1 treatment-related AE (TRAE). The most common were rash (n = 15/120), pruritus (n = 10/120), fatigue (n = 9/120), and nausea (n = 8/120). Grade 3/4 TRAEs occurred in 11% pts, with rash (3%) being the most common. Treatment-related serious AEs were reported in 8 pts; 6 were grade 3/4 in severity. No deaths occurred due to AEs; 3 (2.5%) pts discontinued due to AEs. PK for NIS793 was linearly dose proportional with no obvious correlation between exposure and response. Two pts achieved a partial response (PR; one confirmed in clear cell renal cell carcinoma and one unconfirmed in NSCLC) during dose escalation of the combination. Two confirmed PRs were achieved in the MSS-CRC dose-expansion group. Biomarker data showed evidence of target engagement through increased TGF-β/NIS793 complexes and depleted active TGF-β in peripheral blood. Gene expression and protein analyses in tumor biopsies displayed decreased TGF-β target genes, decreased TGF-β signatures and increased immune signatures suggesting modulation of the TGF-β pathway and preliminary evidence of biological activity. Conclusions: Data showing target engagement and TGF-β pathway inhibition supported the proof of mechanism of NIS793. The RDE of the combination was established and well tolerated in pts with advanced solid tumors. Clinical trial information: NCT02947165.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A954-A955
Author(s):  
Jacob Kaufman ◽  
Doug Cress ◽  
Theresa Boyle ◽  
David Carbone ◽  
Neal Ready ◽  
...  

BackgroundLKB1 (STK11) is a commonly disrupted tumor suppressor in NSCLC. Its loss promotes an immune exclusion phenotype with evidence of low expression of interferon stimulated genes (ISG) and decreased microenvironment immune infiltration.1 2 Clinically, LKB1 loss induces primary immunotherapy resistance.3 LKB1 is a master regulator of a complex downstream kinase network and has pleiotropic effects on cell biology. Understanding the heterogeneous phenotypes associated with LKB1 loss and their influence on tumor-immune biology will help define and overcome mechanisms of immunotherapy resistance within this subset of lung cancer.MethodsWe applied multi-omic analyses across multiple lung adenocarcinoma datasets2 4–6 (>1000 tumors) to define transcriptional and genetic features enriched in LKB1-deficient lung cancer. Top scoring phenotypes exhibited heterogeneity across LKB1-loss tumors, and were further interrogated to determine association with increased or decreased markers of immune activity. Further, immune cell-types were estimated by Cibersort to identify effects of LKB1 loss on the immune microenvironment. Key conclusions were confirmed by blinded pathology review.ResultsWe show that LKB1 loss significantly affects differentiation patterns, with enrichment of ASCL1-expressing tumors with putative neuroendocrine differentiation. LKB1-deficient neuroendocrine tumors had lower expression of Interferon Stimulated Genes (ISG), MHC1 and MHC2 components, and immune infiltration compared to LKB1-WT and non-neuroendocrine LKB1-deficient tumors (figure 1).The abundances of 22 immune cell types assessed by Cibersort were compared between LKB1-deficient and LKB1-WT tumors. We observe skewing of immune microenvironmental composition by LKB1 loss, with lower abundance of dendritic cells, monocytes, and macrophages, and increased levels of neutrophils and plasma cells (table 1). These trends were most pronounced among tumors with neuroendocrine differentiation, and were concordant across three independent datasets. In a confirmatory subset of 20 tumors, plasma cell abundance was assessed by a blinded pathologist. Pathologist assessment was 100% concordant with Cibersort prediction, and association with LKB1 loss was confirmed (P=0.001).Abstract 909 Figure 1Immune-associated Gene Expression Profiles Affected by Neuroendocrine Differentiation within LKB1-Deficient Lung Adenocarcinomas. Gene expression profiles corresponding to five immune-associated phenotypes are shown with bars indicating average GEP scores for tumors grouped according to LKB1 and neuroendocrine status as indicated. P-values represent results from Student’s T-test between groups as indicated.Abstract 909 Table 1LKB1 Loss Affects Composition of Immune Microenvironment. Values indicate log10 P-values comparing LKB1-loss to LKB1-WT tumors. Positive (red) indicates increased abundance in LKB1 loss. Negative (blue) indicates decreased abundance.ConclusionsWe conclude that tumor differentiation patterns strongly influence the immune microenvironment and immune exclusion characteristics of LKB1-deficient tumors. Neuroendocrine differentiation is associated with the strongest immune exclusion characteristics and should be evaluated clinically for evidence of immunotherapy resistance. A novel observation of increased plasma cell abundance is observed across multiple datasets and confirmed by pathology. Causal mechanisms linking differentiation status to immune activity is not well understood, and the functional role of plasma cells in the immune biology of LKB1-deficient tumors is undefined. These questions warrant further study to inform precision immuno-oncology treatments for these patients.AcknowledgementsThis work was funded by SITC AZ Immunotherapy in Lung Cancer grant (SPS256666) and DOD Lung Cancer Research Program Concept Award (LC180633).ReferencesSkoulidis F, Byers LA, Diao L, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 2015;5:860–77.Schabath MB, Welsh EA, Fulp WJ, et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 2016;35:3209–16.Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discovery 2018;8:822-835.Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511:543–50.Chitale D, Gong Y, Taylor BS, et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 2009;28:2773–83.Shedden K, Taylor JM, Enkemann SA, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 2008;14:822–7.


2020 ◽  
Vol 88 (12) ◽  
Author(s):  
Eric L. Brown ◽  
Heather T. Essigmann ◽  
Kristi L. Hoffman ◽  
Noah W. Palm ◽  
Sarah M. Gunter ◽  
...  

ABSTRACT Mucosal surfaces like those present in the lung, gut, and mouth interface with distinct external environments. These mucosal gateways are not only portals of entry for potential pathogens but also homes to microbial communities that impact host health. Secretory immunoglobulin A (SIgA) is the single most abundant acquired immune component secreted onto mucosal surfaces and, via the process of immune exclusion, shapes the architecture of these microbiomes. Not all microorganisms at mucosal surfaces are targeted by SIgA; therefore, a better understanding of the SIgA-coated fraction may identify the microbial constituents that stimulate host immune responses in the context of health and disease. Chronic diseases like type 2 diabetes are associated with altered microbial communities (dysbiosis) that in turn affect immune-mediated homeostasis. 16S rRNA gene sequencing of SIgA-coated/uncoated bacteria (IgA-Biome) was conducted on stool and saliva samples of normoglycemic participants and individuals with prediabetes or diabetes (n = 8/group). These analyses demonstrated shifts in relative abundance in the IgA-Biome profiles between normoglycemic, prediabetic, or diabetic samples distinct from that of the overall microbiome. Differences in IgA-Biome alpha diversity were apparent for both stool and saliva, while overarching bacterial community differences (beta diversity) were also observed in saliva. These data suggest that IgA-Biome analyses can be used to identify novel microbial signatures associated with diabetes and support the need for further studies exploring these communities. Ultimately, an understanding of the IgA-Biome may promote the development of novel strategies to restructure the microbiome as a means of preventing or treating diseases associated with dysbiosis at mucosal surfaces.


1998 ◽  
Vol 44 (7) ◽  
pp. 1504-1513 ◽  
Author(s):  
Michelle Deberg ◽  
Paule Houssa ◽  
Bruce H Frank ◽  
Françoise Sodoyez-Goffaux ◽  
Jean-Claude Sodoyez

Abstract We describe a rapid and simple insulin RIA in which proinsulin and conversion intermediates do not interfere. Three monoclonal antibodies (S1, S2, and S53) were selected for their specificity (directed, respectively, against the B10 region, the junction between A chain and C-peptide, and the junction between B chain and C-peptide), their affinity constant (∼1010 L/mol), and their interactive properties in mixture. S2 and S53 were able to bind simultaneously to the same proinsulin molecule, whereas neither could bind simultaneously with S1. Preincubation of serum samples with an excess of S2 resulted in capture of proinsulin and conversion intermediates modified at the junction between B chain and C-peptide into immune complexes that no longer reacted with S1. Similarly, preincubation with S53 prevented proinsulin and conversion intermediates modified at the junction between A chain and C-peptide from reacting with S1. Preincubation with an excess of both S2 and S53 left insulin as the sole reactant with S1. Thus, separation of insulin precursors from insulin by mutually exclusive antibodies is feasible, and on the basis of this new principle, a highly specific RIA for insulin was designed. The detection limit was 11 pmol/L, and the inter- and intraassay coefficients of variation were 11% and 5%, respectively. The potential of the assay for use in clinical studies was verified by application to serum samples from control subjects and patients with diabetes or insulinoma.


2020 ◽  
Vol 38 (5_suppl) ◽  
pp. 75-75 ◽  
Author(s):  
Michael Rahman Shafique ◽  
Terrence Lee Fisher ◽  
Elizabeth E. Evans ◽  
John E. Leonard ◽  
Desa Rae Electa Pastore ◽  
...  

75 Background: Despite progress of immune checkpoint therapies, many cases of non-small cell lung cancer (NSCLC) are refractory or acquire resistance to current therapies. Antibody blockade of semaphorin 4D (SEMA4D, CD100) can overcome resistance mechanisms of immune exclusion and myeloid suppression. Importantly, combinations of anti-SEMA4D with various immunotherapies enhanced T cell infiltration and activity, as well as durable tumor regression in preclinical models. Pepinemab (VX15/2503) is a first-in-class humanized monoclonal antibody targeting SEMA4D. Methods: The CLASSICAL-Lung clinical trial (NCT03268057) evaluates the combination of pepinemab with anti-PD-L1 antibody avelumab to couple beneficial modifications of the immune microenvironment via pepinemab with immune activation via checkpoint inhibition. This ongoing study evaluates the safety, tolerability and efficacy of the combination in patients with advanced (stage IIIB/IV) NSCLC, including immunotherapy-naïve (ION) patients and patients whose tumors progressed during or following immunotherapy (IOF). Results: The combination was well tolerated with no major safety signals identified. Among 29 evaluable IOF patients, two experienced confirmed partial response (PR) with 63% and 52% tumor reduction on study following acquired resistance to prior treatment with pembrolizumab, 15 additional patients experienced stable disease, and at least 5 patients with durable clinical benefit of ≥ 23 weeks. Among 21 evaluable ION patients, 5 experienced PR, clinical benefit ≥ 1 year was observed in 3 patients, and Disease Control Rate was 81%. Analysis of pre- and on-treatment biopsies demonstrated increased CD8+ T cell density correlating with response, reduction or elimination of tumor in 11/13 biopsies from subjects with PR or SD. Conclusions: Interim analysis suggests the combination of pepinemab plus avelumab is well tolerated and shows initial clinical signals of antitumor activity. Updated clinical response data (minimum of 6 mo. follow-up), as well as additional immunophenotyping of both inflammatory and suppressive myeloid cells will be presented. Clinical trial information: NCT03268057.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yulei Wang ◽  
Li-Chun Lu ◽  
Yinghui Guan ◽  
Ming-Chih Ho ◽  
Shan Lu ◽  
...  

AbstractWe reported a patient with unresectable hepatocellular carcinoma (HCC) who initially received 15 cycles of atezolizumab plus bevacizumab combination and had best tumor response of partial response, but later experienced disease progression. After subsequent surgical resection, the patient enjoyed long-term disease-free status at the last follow-up 19 months after surgery. By investigating paired tumor tissues (pretreatment and post-progression samples) with immunohistochemistry, multiplex immunofluorescence, RNA sequencing, and DNA sequencing, we explored the dynamic changes in the tumor microenvironment (TME) and potential mechanisms underlying acquired resistance to the combination. In the post-progression HCC tissue compared with the baseline tissue, the expression of PD-L1 in tumor-infiltrating immune cells and the abundance of CD8+ T cells in the tumor area had decreased, and an immune-excluded TME had emerged. Transcriptomic analysis revealed a gene expression signature representing progenitor/hepatoblast features in the post-progression tumor tissue, with an increased expression of imprinted genes and decreased expression of cytochrome P450 family genes. Finally, tumor mutational burden and MHC class I expression in tumor cells were both increased in the post-progression tissue, suggesting that neoantigen depletion or loss-of-antigen presentation were unlikely causes of acquired resistance in this patient. Atezolizumab plus bevacizumab combination therapy enabled our patient to receive hepatectomy and achieve long-term remission. A comparison of paired tumor tissues suggested that immune-excluded TME and tumor dedifferentiation may have contributed to acquired resistance to the combination.


Sign in / Sign up

Export Citation Format

Share Document