scholarly journals Phase transition specified by a binary code patterns the vertebrate eye cup

2021 ◽  
Vol 7 (46) ◽  
Author(s):  
Revathi Balasubramanian ◽  
Xuanyu Min ◽  
Peter M. J. Quinn ◽  
Quentin Lo Giudice ◽  
Chenqi Tao ◽  
...  
2021 ◽  
Author(s):  
Revathi Balasubramanian ◽  
Xuanyu Min ◽  
Peter M.J. Quinn ◽  
Quentin Lo Giudice ◽  
Chenqi Tao ◽  
...  

The developing vertebrate eye cup is partitioned into the neural retina (NR), the retinal pigmented epithelium (RPE) and the ciliary margin (CM). By single cell analysis, we showed that a gradient of FGF signaling regulates demarcation and subdivision of the CM and controls its stem cell-like property of self-renewal, differentiation and survival. This regulation by FGF is balanced by an evolutionarily conserved Wnt signaling gradient induced by the lens ectoderm and the periocular mesenchyme, which specifies the CM and the distal RPE. These two morphogen gradients converge in the CM where FGF signaling promotes Wnt signaling by stabilizing β-catenin in a GSK3β-independent manner. We further showed that activation of Wnt signaling converts the NR to either the CM or the RPE depending on the level of FGF signaling. Conversely, activation of FGF transforms the RPE to the NR or CM dependent on Wnt activity. We demonstrated that the default fate of the eye cup is the NR, but synergistic FGF and Wnt signaling promotes CM formation both in vivo and in retinal organoid culture of human iPS cells. Our study reveals that the vertebrate eye develops through phase transition determined by a combinatorial code of FGF and Wnt signaling.


Author(s):  
B. J. Panessa-Warren ◽  
J. B. Warren ◽  
H. W. Kraner

Our previous studies have demonstrated that abnormally high amounts of calcium (Ca) and zinc (Zn) can be accumulated in human retina-choroid under pathological conditions and that barium (Ba), which was not detected in the eyes of healthy individuals, is deposited in the retina pigment epithelium (RPE), and to a lesser extent in the sensory retina and iris. In an attempt to understand how these cations can be accumulated in the vertebrate eye, a morphological and microanalytical study of the uptake and loss of specific cations (K, Ca,Ba,Zn) was undertaken with incubated Rana catesbiana isolated retina and RPE preparations. Large frogs (650-800 gms) were dark adapted, guillotined and their eyes enucleated in deep ruby light. The eyes were hemisected behind the ora serrata and the anterior portion of the eye removed. The eyecup was bisected along the plane of the optic disc and the two segments of retina peeled away from the RPE and incubated.


Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.


Author(s):  
Uwe Lücken ◽  
Joachim Jäger

TEM imaging of frozen-hydrated lipid vesicles has been done by several groups Thermotrophic and lyotrophic polymorphism has been reported. By using image processing, computer simulation and tilt experiments, we tried to learn about the influence of freezing-stress and defocus artifacts on the lipid polymorphism and fine structure of the bilayer profile. We show integrated membrane proteins do modulate the bilayer structure and the morphology of the vesicles.Phase transitions of DMPC vesicles were visualized after freezing under equilibrium conditions at different temperatures in a controlled-environment vitrification system. Below the main phase transition temperature of 24°C (Fig. 1), vesicles show a facetted appearance due to the quasicrystalline areas. A gradual increase in temperature leads to melting processes with different morphology in the bilayer profile. Far above the phase transition temperature the bilayer profile is still present. In the band-pass-filtered images (Fig. 2) no significant change in the width of the bilayer profile is visible.


Author(s):  
Naoki Yamamoto ◽  
Makoto Kikuchi ◽  
Tooru Atake ◽  
Akihiro Hamano ◽  
Yasutoshi Saito

BaZnGeO4 undergoes many phase transitions from I to V phase. The highest temperature phase I has a BaAl2O4 type structure with a hexagonal lattice. Recent X-ray diffraction study showed that the incommensurate (IC) lattice modulation appears along the c axis in the III and IV phases with a period of about 4c, and a commensurate (C) phase with a modulated period of 4c exists between the III and IV phases in the narrow temperature region (—58°C to —47°C on cooling), called the III' phase. The modulations in the IC phases are considered displacive type, but the detailed structures have not been studied. It is also not clear whether the modulation changes into periodic arrays of discommensurations (DC’s) near the III-III' and IV-V phase transition temperature as found in the ferroelectric materials such as Rb2ZnCl4.At room temperature (III phase) satellite reflections were seen around the fundamental reflections in a diffraction pattern (Fig.1) and they aligned along a certain direction deviated from the c* direction, which indicates that the modulation wave vector q tilts from the c* axis. The tilt angle is about 2 degree at room temperature and depends on temperature.


Author(s):  
David C. Martin ◽  
Jun Liao

By careful control of the electron beam it is possible to simultaneously induce and observe the phase transformation from monomer to polymer in certain solid-state polymcrizable diacetylenes. The continuous change in the crystal structure from DCHD diacetylene monomer (a=1.76 nm, b=1.36 nm, c=0.455 nm, γ=94 degrees, P2l/c) to polymer (a=1.74 nm, b=1.29 nm, c=0.49 nm, γ=108 degrees, P2l/c) occurs at a characteristic dose (10−4C/cm2) which is five orders of magnitude smaller than the critical end point dose (20 C/cm2). Previously we discussed the progress of this phase transition primarily as observed down the [001] zone (the chain axis direction). Here we report on the associated changes of the dark field (DF) images and selected area electron diffraction (SAED) patterns of the crystals as observed from the side (i.e., in the [hk0] zones).High resolution electron micrographs (HREM), DF images, and SAED patterns were obtained on a JEOL 4000 EX HREM operating at 400 kV.


1982 ◽  
Vol 85 (1) ◽  
pp. 297-303 ◽  
Author(s):  
A. D. Bandrauk ◽  
K. D. Truong ◽  
S. Jandl

Sign in / Sign up

Export Citation Format

Share Document