Apparatus for the Prolonged Sterile Culture in Vitro of Whole Plants or Excised Plant Tissues

Science ◽  
1946 ◽  
Vol 104 (2703) ◽  
pp. 371-373 ◽  
Author(s):  
R. S. DE ROPP
Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2531
Author(s):  
Aaqib Javid ◽  
Nóra Gampe ◽  
Fulea Gelana ◽  
Zsuzsanna György

Rhodiola rosea produces nearly 150 bioactive compounds. Cinnamyl alcohol glycosides (CAGs) are among the most important secondary metabolites which are specific to this plant species, exhibiting adaptogenic properties along with salidroside. However, raw material supplies for the pharmaceutical industry are hindered by limited access to the plant material. The species is endangered and protected in many areas: cultivation is long and ineffective. Precursor feeding has been found to be an effective strategy for improving the production of secondary metabolites in various plant tissues cultures, including in Rhodiola species. In this study, whole R. rosea plants grown in vitro were subjected to three different precursor treatments, including with trans-cinnamic acid, cinnamaldehyde and cinnamyl alcohol at 2 mM concentrations. The different treatments affected the secondary metabolite production differently. Trans-cinnamic acid did not affect the synthesis significantly, which contradicts earlier studies with cell suspensions. On the other hand, cinnamyl alcohol and cinnamaldehyde were beneficial, improving the production rate of rosin and rosavin by 13.8- and 6.9-fold, and 92.7- and 8.0-fold, respectively. The significant improvement in CAG accumulation due to cinnamaldehyde treatment was unexpected based on previous studies. In addition, cinnamaldehyde triggered the production of rosarin, which the other two treatments failed to do. The study presents the beneficial application of precursors to whole plants grown in vitro.


Author(s):  
Janet H. Woodward ◽  
D. E. Akin

Silicon (Si) is distributed throughout plant tissues, but its role in forages has not been clarified. Although Si has been suggested as an antiquality factor which limits the digestibility of structural carbohydrates, other research indicates that its presence in plants does not affect digestibility. We employed x-ray microanalysis to evaluate Si as an antiquality factor at specific sites of two cultivars of bermuda grass (Cynodon dactvlon (L.) Pers.). “Coastal” and “Tifton-78” were chosen for this study because previous work in our lab has shown that, although these two grasses are similar ultrastructurally, they differ in in vitro dry matter digestibility and in percent composition of Si.Two millimeter leaf sections of Tifton-7 8 (Tift-7 8) and Coastal (CBG) were incubated for 72 hr in 2.5% (w/v) cellulase in 0.05 M sodium acetate buffer, pH 5.0. For controls, sections were incubated in the sodium acetate buffer or were not treated.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1120G-1120
Author(s):  
J. L. Jacobs ◽  
C. T. Stephens

Several growth hormone combinations and silver nitrate concentrations were examined for their effect on regeneration of different pepper genotypes. Primary leaf explants from in vitro seedlings were cultured on a revised Murashige and Skoog medium supplemented with auxin, cytokinin and 1.6% glucose. Combinations of different concentrations of indole-3-acetic acid (IAA), 0-5 mg/l, and 6-benzylaminopurine (BAP), 0-5 mg/l, were tested to determine the most effective medium for shoot primordium formation. Experiments with IAA and BAP did not result in a specific growth hormone combination appropriate for regeneration of all genotypes tested. Of the silver nitrate concentrations tested, 10 mg/l resulted in the best shoot and leaf differentiation and reduced callus formation. Differences in organogenic response of individual genotypes were evaluated on a single regeneration medium. Whole plants were regenerated from 11 of 63 genotypes examined. Based on these experiments, a reproducible regeneration system for pepper was developed with a total of 500 plants regenerated to date.


1990 ◽  
Vol 45 (6) ◽  
pp. 602-606 ◽  
Author(s):  
B. Merkel ◽  
J. Reichling

Abstract Unorganized callus and leaf/root-differentiating callus cultures of Pimpinella major have been established in liquid nutrient medium. Their capacity to accumulate rare phenylpropanoids such as epoxy-pseudoisoeugenol tiglate, epoxy-anol tiglate and anol tiglate was compared with that of seedlings and whole plants. The unorganized callus cultures were not able to accumulate any phenylpropanoids. In comparison, the leaf/root-differentiating callus culture promoted the accumulation of epoxy-pseudoisoeugenol tiglate (up to 90 mg/100 g fr.wt.) but not that of anol-derivatives. The accumulated amount of EPT in PMD-SH was comparable with that in plant seedlings.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1102
Author(s):  
Galina N. Raldugina ◽  
Sergey V. Evsukov ◽  
Liliya R. Bogoutdinova ◽  
Alexander A. Gulevich ◽  
Ekaterina N. Baranova

In this study the transgenic lines (TLs) of tobacco (Nicotianatabacum L.), which overexpress the heterologous gene encoding the bacterial enzyme choline oxidase were evaluated. The goal of our work is to study the effect of choline oxidase gene expression on the sensitivity of plant tissues to the action of NaCl. The regenerative capacity, rhizogenesis, the amount of photosynthetic pigments and osmotically active compounds (proline and glycine betaine) were assessed by in vitro cell culture methods using biochemical and morphological parameters. Transgenic lines with confirmed expression were characterized by high regeneration capacity from callus in the presence of 200 mmol NaCl, partial retention of viability at 400 mmol NaCl. These data correlated with the implicit response of regenerants and whole plants to the harmful effects of salinity. They turned out to be less sensitive to the presence of 200 mmol NaCl in the cultivation medium, in contrast to the WT plants.


Author(s):  
Pengfei Wu ◽  
Xin Wang ◽  
Lilan Gao ◽  
Chunqiu Zhang

BioControl ◽  
2021 ◽  
Author(s):  
Mudassir Iqbal ◽  
Maha Jamshaid ◽  
Muhammad Awais Zahid ◽  
Erik Andreasson ◽  
Ramesh R. Vetukuri ◽  
...  

AbstractUtilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.


Sign in / Sign up

Export Citation Format

Share Document