scholarly journals Ground-based detection of an extended helium atmosphere in the Saturn-mass exoplanet WASP-69b

Science ◽  
2018 ◽  
Vol 362 (6421) ◽  
pp. 1388-1391 ◽  
Author(s):  
Lisa Nortmann ◽  
Enric Pallé ◽  
Michael Salz ◽  
Jorge Sanz-Forcada ◽  
Evangelos Nagel ◽  
...  

Hot gas giant exoplanets can lose part of their atmosphere due to strong stellar irradiation, and these losses can affect their physical and chemical evolution. Studies of atmospheric escape from exoplanets have mostly relied on space-based observations of the hydrogen Lyman-α line in the far ultraviolet region, which is strongly affected by interstellar absorption. Using ground-based high-resolution spectroscopy, we detected excess absorption in the helium triplet at 1083 nanometers during the transit of the Saturn-mass exoplanet WASP-69b, at a signal-to-noise ratio of 18. We measured line blueshifts of several kilometers per second and posttransit absorption, which we interpret as the escape of part of the atmosphere trailing behind the planet in comet-like form.

2019 ◽  
Vol 629 ◽  
pp. A47 ◽  
Author(s):  
L. A. dos Santos ◽  
D. Ehrenreich ◽  
V. Bourrier ◽  
A. Lecavelier des Etangs ◽  
M. López-Morales ◽  
...  

Context. The quiet M2.5 star GJ 436 hosts a warm Neptune that displays an extended atmosphere that dwarfs its own host star. Predictions of atmospheric escape in such planets state that H atoms escape from the upper atmosphere in a collisional regime and that the flow can drag heavier atoms to the upper atmosphere. It is unclear, however, what astrophysical mechanisms drive the process. Aims. Our objective is to leverage the extensive coverage of observations of the far-ultraviolet (FUV) spectrum of GJ 436 obtained with the Cosmic Origins Spectrograph (COS) to search for signals of metallic ions in the upper atmosphere of GJ 436 b, as well as study the activity-induced variability of the star. Methods. We analyzed flux time-series of species present in the FUV spectrum of GJ 436 and successfully performed geocoronal contamination removal in the COS Lyman-α profiles obtained near the Earth’s night-side. Results. GJ 436 displays flaring events with a rate of ~10 d−1. There is evidence for a possibly long-lived active region or longitude that modulates the FUV metallic lines of the star with amplitudes up to 20%. Despite the strong geocoronal contamination in the COS spectra, we detected in-transit excess absorption signals of ~50 and ~30% in the blue and red wings, respectively, of the Lyman-α line. We rule out a wide range of excess absorption levels in the metallic lines of the star during transit. Conclusions. The large atmospheric loss of GJ 436 b observed in Lyman-α transmission spectra is stable over the timescale of a few years, and the red wing signal supports the presence of a variable hydrogen absorption source besides the stable exosphere. The previously claimed in-transit absorption in the Si III line is likely an artifact resulting from the stellar magnetic cycle. The non-detection of metallic ions in absorption could indicate that the escape is not hydrodynamic or that the atmospheric mixing is not efficient in dragging metals high enough for sublimation to produce a detectable escape rate of ions to the exosphere.


2004 ◽  
Vol 217 ◽  
pp. 147-153
Author(s):  
B. D. Savage ◽  
B. P. Wakker ◽  
K. R. Sembach ◽  
P. Richter ◽  
M. Meade

We summarize the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study O VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo and beyond. Strong O VI absorption over the velocity range from −100 to 100 km s−1 reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T~3×105 K in the Milky Way thick disk/halo. The overall distribution of O VI can be described by a plane-parallel patchy absorbing layer with an average O VI mid-plane density of no(O VI) = 1.7×10−8 cm−3, an exponential scale height of ~2.3 kpc, and a ~0.25 dex excess of O VI in the northern Galactic polar region. Approximately 60 percent of the sky is covered by high velocity O VI with |vLSR|>100 km s−1. This high velocity O VI traces a variety of phenomena in and near the Milky Way including outflowing material from the Milky Way, tidal interactions with the Magellanic Clouds, accretion of gas onto the Milky Way, and warm/hot gas interactions in a highly extended (>70 kpc) Galactic corona or with hot intergalactic gas in the Local Group.


1989 ◽  
Vol 135 ◽  
pp. 345-356
Author(s):  
J. Mayo Greenberg

Historically there have been two different types of grain modelling: One of these basically uses particle populations which evolve essentially by coagulation (e. g., the MRN model: Mathis, Rumpl and Nordsieck, 1977); the other considers the physical and chemical evolution of the particles with a particular emphasis on changes not only in sizes but also in chemical and morphological structure (e. g. Greenberg, 1978; Williams, 1989). The model of Oort and van de Hulst (1946) was the first to consider that grains must evolve in interstellar space by treating both growth and destruction in clouds. The chemical properties had already been derived by van de Hulst (1946) and then later described as the dirty ice model which consisted of the saturated molecules H2O, CH4 and NH3 with trace constituents of other atoms and molecules resulting from surface reactions of atoms on the grains. How such grains could nucleate was left as an unsolved problem but the fact that, once formed, there did not seem to be any reason why they should not grow until they exhausted the condensable atoms in the gas led to the suggestion that a limiting destructive mechanism must be provided. This was assumed to be by grain-grain collisions within clouds moving at relative speeds of 10 km s−1. We thus had the first dynamical theory leading to a steady state distribution of grain sizes. This model provided for me the starting point of the core-mantle model of grains. The observations of the 60's and henceforth clearly showed the existence of other types of small particles, which have been invoked to explain the 2200 å hump (Stecher and Donn, 1965), the far ultraviolet (FUV) extinction (Greenberg and Chlewicki, 1983), and now certain infrared emission features. These other components notwithstanding, grains still account for the major fraction of the solid particle mass in space.


2020 ◽  
Vol 636 ◽  
pp. A117 ◽  
Author(s):  
S. R. Merritt ◽  
N. P. Gibson ◽  
S. K. Nugroho ◽  
E. J. W. de Mooij ◽  
M. J. Hooton ◽  
...  

Thermal inversions have long been predicted to exist in the atmospheres of ultra-hot Jupiters. However, the detection of two species thought to be responsible – titanium oxide and vanadium oxide – remains elusive. We present a search for TiO and VO in the atmosphere of the ultra-hot Jupiter WASP-121b (Teq ≳ 2400 K), an exoplanet with evidence of VO in its atmosphere at low resolution which also exhibits water emission features in its dayside spectrum characteristic of a temperature inversion. We observed its transmission spectrum with the UV-Visual Echelle Spectrograph at the Very Large Telescope and used the cross-correlation method – a powerful tool for the unambiguous identification of the presence of atomic and molecular species – in an effort to detect whether TiO or VO were responsible for the observed temperature inversion. No evidence for the presence of TiO or VO was found at the terminator of WASP-121b. By injecting signals into our data at varying abundance levels, we set rough detection limits of [VO] ≲−7.9 and [TiO] ≲−9.3. However, these detection limits are largely degenerate with scattering properties and the position of the cloud deck. Our results may suggest that neither TiO or VO are the main drivers of the thermal inversion in WASP-121b; however, until a more accurate line list is developed for VO, we cannot conclusively rule out its presence. Future works will consist of a search for other strong optically-absorbing species that may be responsible for the excess absorption in the red-optical.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 896 ◽  
Author(s):  
Bernhard Fischbacher ◽  
Bernhard Lechner ◽  
Bernhard Brandstätter

Measuring the distribution of gas concentration is a very common problem in a variety of technological fields. Depending on the detectability of the gas, as well as the technological progress of the sector, different methods are used. In this paper, we present a device and methods to detect the ammonia concentration distribution in the exhaust system of diesel engines in order to increase the performance of the exhaust aftertreatment system. The device has been designed for usage on a hot gas test bench simulating exhaust gas conditions. It consists of multiple optical beams measuring ammonia line concentrations by applying nondispersive absorption spectroscopy in the deep ultraviolet region. The detectors consist of photodiodes allowing high sampling rates up to 3 kHz while providing a high signal-to-noise ratio. A detection limit of only 1 ppm has been achieved despite the short path length of only eight centimeters. The obtained line concentrations form an inverse problem. The methodology of the tomographic techniques is described in detail in order to best solve the inverse problem and obtain the ammonia concentration distribution images for each time step.


2019 ◽  
Vol 489 (4) ◽  
pp. 5046-5052 ◽  
Author(s):  
Renae E Wall ◽  
Mukremin Kilic ◽  
P Bergeron ◽  
B Rolland ◽  
C Genest-Beaulieu ◽  
...  

ABSTRACT We use 1837 DA white dwarfs with high signal-to-noise ratio spectra and Gaia parallaxes to verify the absolute calibration and extinction coefficients for the Galaxy Evolution Explorer (GALEX). We use white dwarfs within 100 pc to verify the linearity correction to the GALEX data. We find that the linearity correction is valid for magnitudes brighter than 15.95 and 16.95 for the far-ultraviolet (FUV) and near-ultraviolet (NUV) bands, respectively. We also use DA white dwarfs beyond 250 pc to calculate extinction coefficients in the FUV and NUV bands: RFUV = 8.01 ± 0.07 and RNUV = 6.72 ± 0.04. These are consistent with the predicted extinction coefficients for Milky Way-type dust in the FUV, but smaller than predictions in the NUV. With well understood optical spectra and state-of-the-art model atmosphere analysis, these white dwarfs currently provide the best constraints on the extinction coefficients for the GALEX data.


1988 ◽  
Vol 132 ◽  
pp. 71-78
Author(s):  
J. P. Maillard

The multiplex properties of the Fourier Transform Spectrometer (FTS) can be considered as disadvantageous with modern detectors and large telescopes, the dominant noise source being no longer in most applications the detector noise. Nevertheless, a FTS offers a gain in information and other instrumental features remain: flexibility in choosing resolving power up to very high values, large throughput, essential in high–resolution spectroscopy with large telescopes, metrologic accuracy, automatic substraction of parasitic background. The signal–to–noise ratio in spectra can also be improved: by limiting the bandwidth with cold filters or even cold dispersers, by matching the instrument to low background foreoptics and high–image quality telescopes. The association with array detectors provides the solution for the FTS to regain its full multiplex advantage.


Sign in / Sign up

Export Citation Format

Share Document