scholarly journals Serial interval of SARS-CoV-2 was shortened over time by nonpharmaceutical interventions

Science ◽  
2020 ◽  
Vol 369 (6507) ◽  
pp. 1106-1109 ◽  
Author(s):  
Sheikh Taslim Ali ◽  
Lin Wang ◽  
Eric H. Y. Lau ◽  
Xiao-Ke Xu ◽  
Zhanwei Du ◽  
...  

Studies of novel coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have reported varying estimates of epidemiological parameters, including serial interval distributions—i.e., the time between illness onset in successive cases in a transmission chain—and reproduction numbers. By compiling a line-list database of transmission pairs in mainland China, we show that mean serial intervals of COVID-19 shortened substantially from 7.8 to 2.6 days within a month (9 January to 13 February 2020). This change was driven by enhanced nonpharmaceutical interventions, particularly case isolation. We also show that using real-time estimation of serial intervals allowing for variation over time provides more accurate estimates of reproduction numbers than using conventionally fixed serial interval distributions. These findings could improve our ability to assess transmission dynamics, forecast future incidence, and estimate the impact of control measures.

Author(s):  
Sheikh Taslim Ali ◽  
Lin Wang ◽  
Eric H. Y. Lau ◽  
Xiao-Ke Xu ◽  
Zhanwei Du ◽  
...  

Abstract Studies of novel coronavirus disease (COVID-19) have reported varying estimates of epidemiological parameters such as serial intervals and reproduction numbers. By compiling a unique line-list database of transmission pairs in mainland China, we demonstrated that serial intervals of COVID-19 have shortened substantially from a mean of 7.8 days to 2.6 days within a month. This change is driven by enhanced non-pharmaceutical interventions, in particular case isolation. We also demonstrated that using real-time estimation of serial intervals allowing for variation over time would provide more accurate estimates of reproduction numbers, than by using conventional definition of fixed serial interval distributions. These findings are essential to improve the assessment of transmission dynamics, forecasting future incidence, and estimating the impact of control measures.


Author(s):  
Xiao-Ke Xu ◽  
Xiao Fan Liu ◽  
Ye Wu ◽  
Sheikh Taslim Ali ◽  
Zhanwei Du ◽  
...  

Abstract Background Knowledge on the epidemiological features and transmission patterns of novel coronavirus disease (COVID-19) is accumulating. Detailed line-list data with household settings can advance the understanding of COVID-19 transmission dynamics. Methods A unique database with detailed demographic characteristics, travel history, social relationships, and epidemiological timelines for 1407 transmission pairs that formed 643 transmission clusters in mainland China was reconstructed from 9120 COVID-19 confirmed cases reported during 15 January–29 February 2020. Statistical model fittings were used to identify the superspreading events and estimate serial interval distributions. Age- and sex-stratified hazards of infection were estimated for household vs nonhousehold transmissions. Results There were 34 primary cases identified as superspreaders, with 5 superspreading events occurred within households. Mean and standard deviation of serial intervals were estimated as 5.0 (95% credible interval [CrI], 4.4–5.5) days and 5.2 (95% CrI, 4.9–5.7) days for household transmissions and 5.2 (95% CrI, 4.6–5.8) and 5.3 (95% CrI, 4.9–5.7) days for nonhousehold transmissions, respectively. The hazard of being infected outside of households is higher for people aged 18–64 years, whereas hazard of being infected within households is higher for young and old people. Conclusions Nonnegligible frequency of superspreading events, short serial intervals, and a higher risk of being infected outside of households for male people of working age indicate a significant barrier to the identification and management of COVID-19 cases, which requires enhanced nonpharmaceutical interventions to mitigate this pandemic.


Author(s):  
Yuke Wang ◽  
Peter Teunis

SummaryBackgroundThe outbreak of novel coronavirus disease 2019 (COVID-19) started in the city of Wuhan, China, with a period of rapid initial spread. Transmission on a regional and then national scale was promoted by intense travel during the holiday period of the Chinese New Year. We studied the variation in transmission of COVID-19, locally in Wuhan, as well as on a larger spatial scale, among different cities and even among provinces in mainland China.MethodsIn addition to reported numbers of new cases, we have been able to assemble detailed contact data for some of the initial clusters of COVID-19. This enabled estimation of the serial interval for clinical cases, as well as reproduction numbers for small and large regions.FindingsWe estimated the average serial interval was 4·8 days. For early transmission in Wuhan, any infectious case produced as many as four new cases, transmission outside Wuhan was less intense, with reproduction numbers below two. During the rapid growth phase of the outbreak the region of Wuhan city acted as a hot spot, generating new cases upon contact, while locally, in other provinces, transmission was low.InterpretationCOVID-19 is capable of spreading very rapidly. The sizes of outbreak in provinces of mainland China mainly depended on the numbers of cases imported from Wuhan as the local reproduction numbers were low. The COVID-19 epidemic should be controllable with appropriate interventions.FundingNo specific funding.


Author(s):  
Juanjuan Zhang ◽  
Maria Litvinova ◽  
Wei Wang ◽  
Yan Wang ◽  
Xiaowei Deng ◽  
...  

AbstractBackgroundThe COVID-19 epidemic originated in Wuhan City of Hubei Province in December 2019 and has spread throughout China. Understanding the fast evolving epidemiology and transmission dynamics of the outbreak beyond Hubei would provide timely information to guide intervention policy.MethodsWe collected individual information on 8,579 laboratory-confirmed cases from official publically sources reported outside Hubei in mainland China, as of February 17, 2020. We estimated the temporal variation of the demographic characteristics of cases and key time-to-event intervals. We used a Bayesian approach to estimate the dynamics of the net reproduction number (Rt) at the provincial level.ResultsThe median age of the cases was 44 years, with an increasing of cases in younger age groups and the elderly as the epidemic progressed. The delay from symptom onset to hospital admission decreased from 4.4 days (95%CI: 0.0-14.0) until January 27 to 2.6 days (0.0-9.0) from January 28 to February 17. The mean incubation period was estimated at 5.2 days (1.8-12.4) and the mean serial interval at 5.1 days (1.3-11.6). The epidemic dynamics in provinces outside Hubei was highly variable, but consistently included a mix of case importations and local transmission. We estimate that the epidemic was self-sustained for less than three weeks with Rt reaching peaks between 1.40 (1.04-1.85) in Shenzhen City of Guangdong Province and 2.17 (1.69-2.76) in Shandong Province. In all the analyzed locations (n=10) Rt was estimated to be below the epidemic threshold since the end of January.ConclusionOur findings suggest that the strict containment measures and movement restrictions in place may contribute to the interruption of local COVID-19 transmission outside Hubei Province. The shorter serial interval estimated here implies that transmissibility is not as high as initial estimates suggested.


2020 ◽  
Vol 9 (2) ◽  
pp. 571 ◽  
Author(s):  
Péter Boldog ◽  
Tamás Tekeli ◽  
Zsolt Vizi ◽  
Attila Dénes ◽  
Ferenc A. Bartha ◽  
...  

We developed a computational tool to assess the risks of novel coronavirus outbreaks outside of China. We estimate the dependence of the risk of a major outbreak in a country from imported cases on key parameters such as: (i) the evolution of the cumulative number of cases in mainland China outside the closed areas; (ii) the connectivity of the destination country with China, including baseline travel frequencies, the effect of travel restrictions, and the efficacy of entry screening at destination; and (iii) the efficacy of control measures in the destination country (expressed by the local reproduction number R loc ). We found that in countries with low connectivity to China but with relatively high R loc , the most beneficial control measure to reduce the risk of outbreaks is a further reduction in their importation number either by entry screening or travel restrictions. Countries with high connectivity but low R loc benefit the most from policies that further reduce R loc . Countries in the middle should consider a combination of such policies. Risk assessments were illustrated for selected groups of countries from America, Asia, and Europe. We investigated how their risks depend on those parameters, and how the risk is increasing in time as the number of cases in China is growing.


2019 ◽  
Vol 147 ◽  
Author(s):  
Jessica Y. Wong ◽  
Edward Goldstein ◽  
Vicky J. Fang ◽  
Benjamin J. Cowling ◽  
Peng Wu

Abstract Statistical models are commonly employed in the estimation of influenza-associated excess mortality that, due to various reasons, is often underestimated by laboratory-confirmed influenza deaths reported by healthcare facilities. However, methodology for timely and reliable estimation of that impact remains limited because of the delay in mortality data reporting. We explored real-time estimation of influenza-associated excess mortality by types/subtypes in each year between 2012 and 2018 in Hong Kong using linear regression models fitted to historical mortality and influenza surveillance data. We could predict that during the winter of 2017/2018, there were ~634 (95% confidence interval (CI): (190, 1033)) influenza-associated excess all-cause deaths in Hong Kong in population ⩾18 years, compared to 259 reported laboratory-confirmed deaths. We estimated that influenza was associated with substantial excess deaths in older adults, suggesting the implementation of control measures, such as administration of antivirals and vaccination, in that age group. The approach that we developed appears to provide robust real-time estimates of the impact of influenza circulation and complement surveillance data on laboratory-confirmed deaths. These results improve our understanding of the impact of influenza epidemics and provide a practical approach for a timely estimation of the mortality burden of influenza circulation during an ongoing epidemic.


2020 ◽  
Author(s):  
Khouloud Talmoudi ◽  
Mouna Safer ◽  
Hejer Letaief ◽  
Aicha Hchaichi ◽  
Chahida Harizi ◽  
...  

Abstract Background Describing transmission dynamics of the outbreak and impact of intervention measures are critical to planning responses to future outbreaks and providing timely information to guide policy makers decision. We estimate serial interval (SI) and temporal reproduction number (Rt) of SARS-CoV-2 in Tunisia. Methods We collected data of investigations and contact tracing between March 1, 2020 and May 5, 2020 as well as illness onset data during the period February 29-May 5, 2020 from National Observatory of New and Emerging Diseases of Tunisia. Maximum likelihood (ML) approach is used to estimate dynamics of Rt. Results 491 of infector-infectee pairs were involved, with 14.46% reported pre-symptomatic transmission. SI follows Gamma distribution with mean 5.30 days [95% CI 4.66–5.95] and standard deviation 0.26 [95% CI 0.23–0.30]. Also, we estimated large changes in Rt in response to the combined lockdown interventions. The Rt moves from 3.18 [95% CI 2.73–3.69] to 1.77 [95% CI 1.49–2.08] with curfew prevention measure, and under the epidemic threshold (0.89 [95% CI 0.84–0.94]) by national lockdown measure. Conclusions Overall, our findings highlight contribution of interventions to interrupt transmission of SARS-CoV-2 in Tunisia.


Author(s):  
Huaiyu Tian ◽  
Yonghong Liu ◽  
Yidan Li ◽  
Chieh-Hsi Wu ◽  
Bin Chen ◽  
...  

AbstractRespiratory illness caused by a novel coronavirus (COVID-19) appeared in China during December 2019. Attempting to contain infection, China banned travel to and from Wuhan city on 23 January and implemented a national emergency response. Here we evaluate the spread and control of the epidemic based on a unique synthesis of data including case reports, human movement and public health interventions. The Wuhan shutdown slowed the dispersal of infection to other cities by an estimated 2.91 days (95%CI: 2.54-3.29), delaying epidemic growth elsewhere in China. Other cities that implemented control measures pre-emptively reported 33.3% (11.1-44.4%) fewer cases in the first week of their outbreaks (13.0; 7.1-18.8) compared with cities that started control later (20.6; 14.5-26.8). Among interventions investigated here, the most effective were suspending intra-city public transport, closing entertainment venues and banning public gatherings. The national emergency response delayed the growth and limited the size of the COVID-19 epidemic and, by 19 February (day 50), had averted hundreds of thousands of cases across China.One sentence summaryTravel restrictions and the national emergency response delayed the growth and limited the size of the COVID-19 epidemic in China.


2020 ◽  
Author(s):  
Juan Fernandez-Recio

A previously developed mechanistic model of COVID-19 transmission has been adapted and applied here to study the evolution of the disease and the effect of intervention measures in some European countries and territories where the disease had major impact. A clear impact of the major intervention measures on the reproduction number (Rt) has been found in all studied countries and territories, as already suggested by the drop in the number of deaths over time. Interestingly, the impact of such major intervention measures seems to be the same in most of these countries. The model has also provided realistic estimates of the total number of infections, active cases and future outcome. While the predictive capabilities of the model are much more uncertain before the peak of the outbreak, we could still reliably predict the evolution of the disease after a major intervention by assuming the afterwards reproduction number from current study. More challenging is to foresee the long-term impact of softer intervention measures, but this model can estimate the outcome of different scenarios and help planning changes in the implementation of control measures in a given country or region.


Author(s):  
Chong You ◽  
Yuhao Deng ◽  
Wenjie Hu ◽  
Jiarui Sun ◽  
Qiushi Lin ◽  
...  

BackgroundThe 2019-nCoV outbreak in Wuhan, China has attracted world-wide attention. As of February 11, 2020, a total of 44730 cases of novel coronavirus-infected pneumonia associated with COVID-19 were confirmed by the National Health Commission of China.MethodsThree approaches, namely Poisson likelihood-based method (ML), exponential growth rate-based method (EGR) and stochastic Susceptible-Infected-Removed dynamic model-based method (SIR), were implemented to estimate the basic and controlled reproduction numbers.ResultsA total of 71 chains of transmission together with dates of symptoms onset and 67 dates of infections were identified among 5405 confirmed cases outside Hubei as reported by February 2, 2020. Based on this information, we find the serial interval having an average of 4.41 days with a standard deviation of 3.17 days and the infectious period having an average of 10.91 days with a standard deviation of 3.95 days.ConclusionsThe controlled reproduction number is declining. It is lower than one in most regions of China, but is still larger than one in Hubei Province. Sustained efforts are needed to further reduce the Rc to below one in order to end the current epidemic.


Sign in / Sign up

Export Citation Format

Share Document