scholarly journals Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders

Science ◽  
2021 ◽  
pp. eabf9277
Author(s):  
Simone Brioschi ◽  
Wei-Le Wang ◽  
Vincent Peng ◽  
Meng Wang ◽  
Irina Shchukina ◽  
...  

The meninges contain adaptive immune cells that provide immunosurveillance of the CNS. These cells are thought to derive from the systemic circulation. Through single-cell analyses, confocal imaging, bone marrow chimeras, and parabiosis experiments, we show that meningeal B cells derive locally from the calvaria, which harbors a bone marrow niche for hematopoiesis. B cells reach the meninges from the calvaria through specialized vascular connections. This calvarial–meningeal path of B cell development may provide the CNS with a constant supply of B cells educated by CNS antigens. Conversely, we show that a subset of antigen-experienced B cells that populate the meninges in aging mice are blood-borne. These results identify a private source for meningeal B cells. which may help maintain immune privilege within the CNS.

1971 ◽  
Vol 133 (6) ◽  
pp. 1325-1333 ◽  
Author(s):  
Klaus-Ulrich Hartmann

Spleen cells of bone marrow chimeras (B cells) and of irradiated mice injected with thymus cells and heterologous erythrocytes (educated T cells) were mixed and cultured together (17). The number of PFC developing in these cultures was dependent both on the concentration of the B cells and of the educated T cells. In excess of T cells the number of developing PFC is linearly dependent on the number of B cells. At high concentrations of T cells more PFC developed; the increase in the number of PFC was greatest between the 3rd and 4th day of culture. Increased numbers of educated T cells also assisted the development of PFC directed against the erythrocytes. It is concluded that the T cells not only play a role during the triggering of the precursor cells but also during the time of proliferation of the B cells; close contact between B and T cells seems to be needed to allow the positive activity of the T cells.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown.Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV- and CMV+ groups.Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV- persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons.Conclusion. Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. Recently, the importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown. Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV - and CMV + groups. Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8 + T cells was reduced. In addition, the frequency of B cells and CD4 + T cells positively correlated with BMI in the BM of CMV - persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons. Conclusion. Our work suggests that obesity may represent an independent risk factor supporting immunosenescence, in addition to aging and CMV. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


1984 ◽  
Vol 160 (3) ◽  
pp. 711-723 ◽  
Author(s):  
J Sprent ◽  
J Bruce

Evidence is presented that B cells from mice with X-linked immunodeficiency (xid) differentiate at a slower rate than normal B cells. This conclusion stems from studies in which (B6 X CBA/J)F1 mice were heavily irradiated (1,000 rads) and reconstituted with a mixture of T-depleted marrow cells taken from (a) nondefective B6 mice (H-2b) and (b) xid CBA/N or nondefective CBA/Ca mice (both H-2k). With transfer of CBA/Ca plus B6 marrow cells, the irradiated recipients become repopulated with B cells derived from both parental marrow sources; except for an early imbalance (probably reflecting Hh resistance), the degree of chimerism remained relatively stable over a period of more than 6 months. Very different results occurred with transfer of a mixture of xid CBA/N and normal B6 marrow. Within the first 2 months after marrow reconstitution, a low but significant proportion of the B cells in both spleen and lymph nodes were of CBA/N origin. Thereafter the proportion of these cells fell progressively, and by 6-9 months virtually all of the B cells were of B6 origin. This gradual decline in CBA/N-derived cells did not apply to other cell types, i.e., T cells or pluripotential stem cells. Analogous results were obtained with transfer of CBA/N vs. CBA/Ca marrow cells into sublethally irradiated (750 rads) (CBA/N X DBA/2)F1 male vs. female mice. For example, CBA/N-marrow derived B cells differentiated effectively and survived for long periods in F1 male mice (xid----xid) but not in F1 female mice (xid----normal). The finding that xid B cells eventually disappear in the presence of normal B cells strengthens the view that xid B cells are an abnormal population not represented in normal mice.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Martin Solders ◽  
Laia Gorchs ◽  
Sebastian Gidlöf ◽  
Eleonor Tiblad ◽  
Anna-Carin Lundell ◽  
...  

The maternal part of the placenta, the decidua, consists of maternal immune cells, decidual stromal cells, and extravillous fetal trophoblasts. In a successful pregnancy, these cell compartments interact to provide an intricate balance between fetal tolerance and antimicrobial defense. These processes are still poorly characterized in the two anatomically different decidual tissues, basalis and parietalis. We examined immune cells from decidua basalis and parietalis from term placentas (n=15) with flow cytometry. By using multivariate discriminant analysis, we found a clear separation between the two decidual compartments based on the 81 investigated parameters. Decidua parietalis lymphocytes displayed a more activated phenotype with a higher expression of coinhibitory markers than those isolated from basalis and contained higher frequencies of T regulatory cells. Decidua basalis contained higher proportions of monocytes, B cells, and mucosal-associated invariant T (MAIT) cells. The basalis B cells were more immature, and parietalis MAIT cells showed a more activated phenotype. Conventional T cells, NK cells, and MAIT cells from both compartments potently responded with the production of interferon-γand/or cytotoxic molecules in response to stimulation. To conclude, leukocytes in decidua basalis and parietalis displayed remarkable phenotypic disparities, indicating that the corresponding stromal microenvironments provide different immunoregulatory signals.


1978 ◽  
Vol 147 (6) ◽  
pp. 1838-1842 ◽  
Author(s):  
J Sprent

F1 leads to parent bone marrow chimeras were prepared by transferring F1 hybrid marrow cells into heavily irradiated parental strain mice. When unprimed, donor-derived F1 T cells from the chimeras were activated to sheep erythrocytes (SRC) for 5 days in irradiated normal F1 mice, high IgM and IgG anti-SRC responses were observed with F1 B cells, and with B cells H-2-compatible with the strain in which the T cells were raised from stem cells. Significantly, however, responses with B cells of the opposite parental strain were either absent or very low. The restriction in T-helper function mapped to the K-end of the H-2 complex and could not be attributed to active suppression.


1978 ◽  
Vol 147 (6) ◽  
pp. 1849-1853 ◽  
Author(s):  
CM Warner ◽  
TJ Berntson ◽  
L Eakley ◽  
JL McIvor ◽  
RC Newton

The question of whether or not lymphoid cells can cooperate across a histocompatibility difference barrier has been studied in several laboratories. Using an adoptive transfer system, Katz et al. (1) first showed that T cells from (low responder × high responder) F(1) mice, primed to the terpolymer L-glutamic acid, L-lysine, L-tyrosine (GLT), could collaborate with 2,4-dinitrophenyl (DNP)-primed B cells from a high responder, but not a low responder strain, in response to DNP-GLT. The response to GLT is under H- 2-1inked Ir gene control. In contrast, studies with mouse bone marrow chimeras have shown that T cells can interact with H-2-histoincompatible B cells in response to antigens not under Ir gene control (2-4). Another type of chimera, the allophenic mouse, has been used to study possible histoincompatible cell interactions to a number of antigens, including DNP-L- glutamic acid, L-lysine, L-alanine; L-glutamic acid, L-alanine, L-tyrosine; L-glutamic acid, L-lysine, L-phenylalanine; and poly-L (Tyr, Glu)-poly D,L- Ala-poly-L-Lys[T,G)-A-L] (5-9). The response to each of these antigens is under H-2-1inked Ir gene control. It was initially reported (8, 9) that in allophenic mice containing both high and low responder cells, the antibody to (T,G)-A-L was of both the high and low responder allotype. This was interpreted to mean that high responder T cells had cooperated with low responder B cells across a histocompatibility difference barrier in the environment of the allophenic mice. However, Press and McDevitt (10) have recently reported that additional and more accurate analyses of these allophenic mouse sera failed to detect any anti-(T,G)-A-L antibody of the low responder allotype. Moreover, in an experiment using bone marrow chimeras, there was no low responder allotype antibody produced in response to (T,G)-A- L(10). The present study was undertaken to test the immune response of allophonic mice to an antigen, DNP-bovine gamma globulin (DNP(56)BGG), known to be controlled by genes both inside and outside the H-2 complex (11, 12).(1) When high and low responder cells to DNP(56)BGG are present in allophenic mice, only antibody of the high responder allotype is produced. The results suggest that cell cooperation in allophenic mice cannot occur across a histocompatibility difference barrier in response to an antigen whose genetic control is at least partially within the H-2 complex.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-33
Author(s):  
Adedamola Elujoba-Bridenstine ◽  
Lijian Shao ◽  
Katherine Zink ◽  
Laura Sanchez ◽  
Kostandin V. Pajcini ◽  
...  

Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells which differentiate to maintain and replenish blood lineages throughout life. Due to these characteristics, HSPC transplants represent a cure for patients with a variety of hematological disorders. HSPC function and behavior is tightly regulated by various cell types and factors in the bone marrow niche. The nervous system has been shown to indirectly influence hematopoiesis by innervating the niche; however, we present a direct route of HSPC regulation via expression of neurotransmitter receptors on HSPC surface. We have identified Gamma Aminobutyric acid (GABA) receptor B subunit 1 (Gabbr1), a hitherto unknown hematopoietic player, as a regulator of HSPC function. GABBR1 is known to be expressed on human HSPCs (Steidl et al., Blood 2004), however its function in their regulation remains unknown. Based on published RNA-seq data (Nestorowa et al., Blood 2016), we discovered that Gabbr1 is expressed on a subset of HSPCs. We confirmed this expression using RT-qPCR to assay hematopoietic populations in the bone marrow (BM). Surface receptor expression analysis showed that Gabbr1 protein is expressed on a subset of BM HSPCs. To detect GABA, the ligand for Gabbr1 in the BM microenvironment, we utilized imaging mass spectrometry (IMS). We detected regionally specific GABA signal in the endosteal region of the BM. We further identified B cells as a cellular source of GABA in the BM. To understand the role of Gabbr1 in hematopoiesis, we generated CRISPR-Cas9 Gabbr1 null mutants on a C57/BL6 background suitable for hematopoietic studies and studied their hematopoietic phenotype. We discovered a decrease in the absolute number of Lin-Sca1+cKit+ (LSK) HSPCs, but the long-term hematopoietic stem cells (LT-HSCs) remain unaffected. Further analysis of peripheral blood of Gabbr1 null mutants showed decreased white blood cells due to reduced B220+ cells. This differentiation defect was confirmed in an in vitro differentiation assay where Gabbr1 null HSPCs displayed an impaired ability to produce B cells. We show that Gabbr1 null HSCs show diminished reconstitution ability when transplanted in a competitive setting. Reduced Gabbr1 null HSC reconstitution persisted in secondary transplant recipients indicating a cell autonomous role for Gabbr1 in regulating reconstitution of HSCs in transplant recipients. Our results show a crucial role for Gabbr1 in HSPC regulation and may translate to human health as a rare human SNP within the GABBR1 locus that correlates with altered leukocyte counts has been reported (Astle et al., Cell 2016). Our studies indicate an important role for Gabbr1 in HSPC reconstitution and differentiation into B cell lineages. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Emina Hayashida ◽  
Zheng Lung Ling ◽  
Thomas M. Ashhurst ◽  
Barney Viengkhou ◽  
So Ri Jung ◽  
...  

Abstract Background Until the end of the twentieth century, Zika virus (ZIKV) was thought to cause a mostly mild, self-limiting disease in humans. However, as the geographic distribution of ZIKV has shifted, so too has its pathogenicity. Modern-day ZIKV infection is now known to cause encephalitis, acute disseminated encephalomyelitis, and Guillain-Barré syndrome in otherwise healthy adults. Nevertheless, the underlying pathogenetic mechanisms responsible for this shift in virulence remain unclear. Methods Here, we investigated the contribution of the innate versus the adaptive immune response using a new mouse model involving intracranial infection of adult immunocompetent mice with a moderately low dose of ZIKV MR766. To determine the contribution of type I interferons (IFN-Is) and adaptive immune cells, we also studied mice deficient for the IFN-I receptor 1 (Ifnar1−/−) and recombination-activating gene 1 (Rag1−/−). Results We show that intracranial infection with ZIKV resulted in lethal encephalitis. In wild-type mice, ZIKV remained restricted predominantly to the central nervous system (CNS) and infected neurons, whereas astrocytes and microglia were spared. Histological and molecular analysis revealed prominent activation of resident microglia and infiltrating monocytes that were accompanied by an expression of pro-inflammatory cytokines. The disease was independent of T and B cells. Importantly, unlike peripheral infection, IFN-Is modulated but did not protect from infection and lethal disease. Lack of IFN-I signaling resulted in spread of the virus, generalized inflammatory changes, and accelerated disease onset. Conclusions Using intracranial infection of immunocompetent wild-type mice with ZIKV, we demonstrate that in contrast to the peripheral immune system, the CNS is susceptible to infection and responds to ZIKV by initiating an antiviral immune response. This response is dominated by resident microglia and infiltrating monocytes and macrophages but does not require T or B cells. Unlike in the periphery, IFN-Is in the CNS cannot prevent the establishment of infection. Our findings show that ZIKV encephalitis in mice is dependent on the innate immune response, and adaptive immune cells play at most a minor role in disease pathogenesis.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 220-220 ◽  
Author(s):  
Corey J Cain ◽  
Randell Rueda ◽  
Bryce T McLelland ◽  
Nicole Collette ◽  
Gabriela Loots ◽  
...  

Abstract Abstract 220 Hematopoietic cell fate decisions are dependent on their localized microenvironmental niche. In the bone, endosteal osteoblasts have been shown to support hematopoietic stem cells (HSC) self-renewal, as demonstrated by transgenic and knockout mouse models in which osteoblast populations were increased or decreased. In addition, Wnt signaling and the Wnt antagonist Dkk-1 have been implicated in various aspects of hematopoiesis and HSC self-renewal. Sclerostin (Sost) is a secreted protein that is primarily expressed by fully mature osteocytes and acts on osteoblasts as a negative regulator of bone growth, by antagonizing Wnt signaling by its binding to the Wnt co-receptors Lrp4, Lrp5, and/or Lrp6. Here, we investigated the role of Sost on hematopoiesis in the bone marrow niche. Increased osteoblast activity in sclerostin-knockout (Sost−/−) mice results in hypermineralized bones with small bone marrow cavities. As such, Sost−/− mice contain markedly reduced numbers of CD45+hematopoietic cells in the bone marrow. Since hematopoietic stem cell activity is dependent on osteoblast function, we examined whether the hyperactive osteoblast activity in Sost−/− mice influences the numbers of hematopoietic stem cells, lymphoid progenitor cells and myeloid progenitor cells in the bone marrow. Surprisingly, no differences were observed in hematopoietic stem and progenitor cell frequency and cell number. However, we found the bone marrow of Sost−/− mice to be depleted of B cells, and this reduction can be attributed to premature apoptosis beginning at the pre-pro-B cell stage. Examination of Sost expression showed that no hematopoietic cells expressed Sost, however, pre-pro, immature and recirculating B cells expressed Lrp5 and Lrp6. These gene expression patterns suggested that the defect in B cell development in Sost−/− mice is non-cell autonomous and that absence of Sost could affect Wnt signaling in these populations. We observed that the expression of Wnt target genes CCND1 and Lef-1 were not affected by the absence of Sost, but c-Myc was significantly upregulated in recirculating B cells in the bone marrow. We also observed a significant decrease in CXCL12 expression in the bone marrow stroma in Sost−/− mice, consistent with their inability to adequately support B cell development. Taken together, our results indicate that the B cell developmental defects in Sost−/− mice are non-cell autonomous, and we are currently performing reciprocal bone marrow transplantation experiments to further support this hypothesis. Our studies demonstrate a novel role for Sost in the regulation of B cell development in the bone marrow, and demonstrate that distinct Wnt antagonists play specific roles in the regulation of hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document