scholarly journals PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production

2018 ◽  
Vol 10 (460) ◽  
pp. eaar8356 ◽  
Author(s):  
Lindsay J. Celada ◽  
Jonathan A. Kropski ◽  
Jose D. Herazo-Maya ◽  
Weifeng Luo ◽  
Amy Creecy ◽  
...  

Pulmonary fibrosis is a progressive inflammatory disease with high mortality and limited therapeutic options. Previous genetic and immunologic investigations suggest common intersections between idiopathic pulmonary fibrosis (IPF), sarcoidosis, and murine models of pulmonary fibrosis. To identify immune responses that precede collagen deposition, we conducted molecular, immunohistochemical, and flow cytometric analysis of human and murine specimens. Immunohistochemistry revealed programmed cell death-1 (PD-1) up-regulation on IPF lymphocytes. PD-1+CD4+ T cells with reduced proliferative capacity and increased transforming growth factor–β (TGF-β)/interleukin-17A (IL-17A) expression were detected in IPF, sarcoidosis, and bleomycin CD4+ T cells. PD-1+ T helper 17 cells are the predominant CD4+ T cell subset expressing TGF-β. Coculture of PD-1+CD4+ T cells with human lung fibroblasts induced collagen-1 production. Strikingly, ex vivo PD-1 pathway blockade resulted in reductions in TGF-β and IL-17A expression from CD4+ T cells, with concomitant declines in collagen-1 production from fibroblasts. Molecular analysis demonstrated PD-1 regulation of the transcription factor STAT3 (signal transducer and activator of transcription 3). Chemical blockade of STAT3, using the inhibitor STATTIC, inhibited collagen-1 production. Both bleomycin administration to PD-1 null mice or use of antibody against programmed cell death ligand 1 (PD-L1) demonstrated significantly reduced fibrosis compared to controls. This work identifies a critical, previously unrecognized role for PD-1+CD4+ T cells in pulmonary fibrosis, supporting the use of readily available therapeutics that directly address interstitial lung disease pathophysiology.

2022 ◽  
Author(s):  
Farida Ahangari ◽  
Christine Becker ◽  
Daniel G Foster ◽  
Maurizio Chioccioli ◽  
Meghan Nelson ◽  
...  

Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two FDA approved anti-fibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Using an in-silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor, originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. We investigated the anti-fibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: (i) in vitro in normal human lung fibroblasts (NHLFs); (ii) in vivo in bleomycin and recombinant adenovirus transforming growth factor-beta (Ad-TGF-β) murine models of pulmonary fibrosis; and (iii) ex vivo in precision cut lung slices from these mouse models. In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone.


Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3153-3161
Author(s):  
Hans J. P. M. Koenen ◽  
Irma Joosten

The generation of immunoregulatory T cells that block the B7(CD86/CD80)-CD28 and/or CD40-CD154 costimulatory pathways has great potential for the induction of long-term transplantation tolerance. In a human polyclonal in vitro model, combined monoclonal antibody (mAb) blocking of the costimulatory ligands CD40 and CD86 lead to allospecific T-cell anergy that cannot be reversed by antigenic rechallenge in the presence of IL-2. Although antigenic restimulation with IL-2 restored the proliferative response, subsequent antigenic restimulation of the restored anergic cells in a tertiary mixed lymphocyte culture still resulted in nonresponsiveness. Importantly, these anergic T cells suppress the response of naive alloreactive T cells in an antigen-specific way via linked recognition. Suppression may partially depend on local IL-10 production, while transforming growth factor–β (TGF-β) did not play a role. Irrespective of the monoclonal antibody combination used, blast formation occurred in a subset of CD4+ cells. These cells were characterized by a sustained CD45RA expression, an increased T-cell receptor density, and a lower level of CD4 expression. A reduced number of CD45RO+/CD8+ T cells was observed whenever anti-CD86 was combined with anti-CD40, which was reflected by an even more attenuated cytotoxic T-cell function. This indicates the importance of CD40-CD154 in the generation of cytotoxic T cells in this transplantation model. We hypothesize that in our model, anergy is induced in the CD4+ T-cell subset, whereby CD8+ cytotoxic effector function is impaired by the lack of both CD40-CD154 signaling and cytokine-mediated help. This costimulatory ligand–directed mAb approach might well be used for the ex vivo generation of antigen-specific immunoregulatory T cells applicable in adoptive immunotherapy.


Blood ◽  
1993 ◽  
Vol 82 (2) ◽  
pp. 521-527 ◽  
Author(s):  
Y Tamaru ◽  
T Miyawaki ◽  
K Iwai ◽  
T Tsuji ◽  
R Nibu ◽  
...  

Abstract bcl-2 proto-oncogene encodes an inner mitochondrial membrane protein that blocks programmed cell death (apoptosis). There is now increasing evidence that regulation of bcl-2 expression is a determinant of life or death in normal lymphocytes. We have recently described that activated (CD45RO+) CD4+ and CD8+ T cells in acute infectious mononucleosis (IM) undergo apoptotic cell death on culturing, indicating an activation-driven cell death of mature T cells. In this work, we examine bcl-2 expression by activated T cells in acute IM using a flow-cytometric analysis with an anti-bcl-2 monoclonal antibody (MoAb). It was consistently observed that most T cells from acute IM patients displayed only much less bcl-2, while normal T cells expressed bcl-2 relatively strongly. Multicolor analysis showed that bcl-2- lacking T cells in acute IM were restricted to the CD45RO+ (activated) populations of CD4+, as well as CD8+ T cells. In contrast, the relatively intense levels of bcl-2 were expressed in both CD45RO+ and CD45RO- T-cell populations from normal subjects. This marked difference in bcl-2 expression of CD45RO+ T cells between acute IM and normal controls was also confirmed by Western blot analysis. Activated (CD45RO+) T cells with low bcl-2 expression, but not bcl-2-expressing CD45RO- T cells, in acute IM patients were found to die easily when cultured without added growth factors. However, in normal individuals, both CD45RO+ and CD45RO- T cells were relatively stable on culturing. These findings suggest that lack of bcl-2 expression by activated (CD45RO+) T cells in acute IM might be associated with their susceptibility to programmed cell death.


Blood ◽  
1993 ◽  
Vol 82 (2) ◽  
pp. 521-527
Author(s):  
Y Tamaru ◽  
T Miyawaki ◽  
K Iwai ◽  
T Tsuji ◽  
R Nibu ◽  
...  

bcl-2 proto-oncogene encodes an inner mitochondrial membrane protein that blocks programmed cell death (apoptosis). There is now increasing evidence that regulation of bcl-2 expression is a determinant of life or death in normal lymphocytes. We have recently described that activated (CD45RO+) CD4+ and CD8+ T cells in acute infectious mononucleosis (IM) undergo apoptotic cell death on culturing, indicating an activation-driven cell death of mature T cells. In this work, we examine bcl-2 expression by activated T cells in acute IM using a flow-cytometric analysis with an anti-bcl-2 monoclonal antibody (MoAb). It was consistently observed that most T cells from acute IM patients displayed only much less bcl-2, while normal T cells expressed bcl-2 relatively strongly. Multicolor analysis showed that bcl-2- lacking T cells in acute IM were restricted to the CD45RO+ (activated) populations of CD4+, as well as CD8+ T cells. In contrast, the relatively intense levels of bcl-2 were expressed in both CD45RO+ and CD45RO- T-cell populations from normal subjects. This marked difference in bcl-2 expression of CD45RO+ T cells between acute IM and normal controls was also confirmed by Western blot analysis. Activated (CD45RO+) T cells with low bcl-2 expression, but not bcl-2-expressing CD45RO- T cells, in acute IM patients were found to die easily when cultured without added growth factors. However, in normal individuals, both CD45RO+ and CD45RO- T cells were relatively stable on culturing. These findings suggest that lack of bcl-2 expression by activated (CD45RO+) T cells in acute IM might be associated with their susceptibility to programmed cell death.


Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3153-3161 ◽  
Author(s):  
Hans J. P. M. Koenen ◽  
Irma Joosten

Abstract The generation of immunoregulatory T cells that block the B7(CD86/CD80)-CD28 and/or CD40-CD154 costimulatory pathways has great potential for the induction of long-term transplantation tolerance. In a human polyclonal in vitro model, combined monoclonal antibody (mAb) blocking of the costimulatory ligands CD40 and CD86 lead to allospecific T-cell anergy that cannot be reversed by antigenic rechallenge in the presence of IL-2. Although antigenic restimulation with IL-2 restored the proliferative response, subsequent antigenic restimulation of the restored anergic cells in a tertiary mixed lymphocyte culture still resulted in nonresponsiveness. Importantly, these anergic T cells suppress the response of naive alloreactive T cells in an antigen-specific way via linked recognition. Suppression may partially depend on local IL-10 production, while transforming growth factor–β (TGF-β) did not play a role. Irrespective of the monoclonal antibody combination used, blast formation occurred in a subset of CD4+ cells. These cells were characterized by a sustained CD45RA expression, an increased T-cell receptor density, and a lower level of CD4 expression. A reduced number of CD45RO+/CD8+ T cells was observed whenever anti-CD86 was combined with anti-CD40, which was reflected by an even more attenuated cytotoxic T-cell function. This indicates the importance of CD40-CD154 in the generation of cytotoxic T cells in this transplantation model. We hypothesize that in our model, anergy is induced in the CD4+ T-cell subset, whereby CD8+ cytotoxic effector function is impaired by the lack of both CD40-CD154 signaling and cytokine-mediated help. This costimulatory ligand–directed mAb approach might well be used for the ex vivo generation of antigen-specific immunoregulatory T cells applicable in adoptive immunotherapy.


2020 ◽  
Vol 4 (10) ◽  
pp. 2143-2157 ◽  
Author(s):  
Alak Manna ◽  
Timothy Kellett ◽  
Sonikpreet Aulakh ◽  
Laura J. Lewis-Tuffin ◽  
Navnita Dutta ◽  
...  

Abstract Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal expansion of CD5+CD23+CD27+CD19+κ/λ+ B lymphocytes and are clinically noted to have profound immune suppression. In these patients, it has been recently shown that a subset of B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our investigation identified that CLL cells with a CD19+CD24+CD38hi immunophenotype (B regulatory cell [Breg]–like CLL cells) produce high amounts of IL-10 and transforming growth factor β (TGF-β) and are capable of transforming naive T helper cells into CD4+CD25+FoxP3+ T regulatory cells (Tregs) in an IL-10/TGF-β-dependent manner. A strong correlation between the percentage of CD38+ CLL cells and Tregs was observed. CD38hi Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in interferon-γ and proliferation of cytotoxic CD8+ T cells with an activated phenotype, which showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38 mAb therapy were validated in a CLL–patient-derived xenograft model in vivo, which showed decreased percentage of Bregs, Tregs, and PD1+CD38hiCD8+ T cells, but increased Th17 and CD8+ T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in CLL can modulate the tumor microenvironment; skewing T-cell populations from an immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for enhanced anti-CLL response.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 898
Author(s):  
Brian H. Kim ◽  
Maciej Jeziorek ◽  
Hur Dolunay Kanal ◽  
Viorica Raluca Contu ◽  
Radek Dobrowolski ◽  
...  

Recent studies of cerebral hypoxia-ischemia (HI) have highlighted slowly progressive neurodegeneration whose mechanisms remain elusive, but if blocked, could considerably improve long-term neurological function. We previously established that the cytokine transforming growth factor (TGF)β1 is highly elevated following HI and that delivering an antagonist for TGFβ receptor activin-like kinase 5 (ALK5)—SB505124—three days after injury in a rat model of moderate pre-term HI significantly preserved the structural integrity of the thalamus and hippocampus as well as neurological functions associated with those brain structures. To elucidate the mechanism whereby ALK5 inhibition reduces cell death, we assessed levels of autophagy markers in neurons and found that SB505124 increased numbers of autophagosomes and levels of lipidated light chain 3 (LC3), a key protein known to mediate autophagy. However, those studies did not determine whether (1) SB was acting directly on the CNS and (2) whether directly inducing autophagy could decrease cell death and improve outcome. Here we show that administering an ALK5 antagonist three days after HI reduced actively apoptotic cells by ~90% when assessed one week after injury. Ex vivo studies using the lysosomal inhibitor chloroquine confirmed that SB505124 enhanced autophagy flux in the injured hemisphere, with a significant accumulation of the autophagic proteins LC3 and p62 in SB505124 + chloroquine treated brain slices. We independently activated autophagy using the stimulatory peptide Tat-Beclin1 to determine if enhanced autophagy is directly responsible for improved outcomes. Administering Tat-Beclin1 starting three days after injury preserved the structural integrity of the hippocampus and thalamus with improved sensorimotor function. These data support the conclusion that intervening at this phase of injury represents a window of opportunity where stimulating autophagy is beneficial.


Sign in / Sign up

Export Citation Format

Share Document