scholarly journals Agrin induces long-term osteochondral regeneration by supporting repair morphogenesis

2020 ◽  
Vol 12 (559) ◽  
pp. eaax9086 ◽  
Author(s):  
Suzanne E. Eldridge ◽  
Aida Barawi ◽  
Hui Wang ◽  
Anke J. Roelofs ◽  
Magdalena Kaneva ◽  
...  

Cartilage loss leads to osteoarthritis, the most common cause of disability for which there is no cure. Cartilage regeneration, therefore, is a priority in medicine. We report that agrin is a potent chondrogenic factor and that a single intraarticular administration of agrin induced long-lasting regeneration of critical-size osteochondral defects in mice, with restoration of tissue architecture and bone-cartilage interface. Agrin attracted joint resident progenitor cells to the site of injury and, through simultaneous activation of CREB and suppression of canonical WNT signaling downstream of β-catenin, induced expression of the chondrogenic stem cell marker GDF5 and differentiation into stable articular chondrocytes, forming stable articular cartilage. In sheep, an agrin-containing collagen gel resulted in long-lasting regeneration of bone and cartilage, which promoted increased ambulatory activity. Our findings support the therapeutic use of agrin for joint surface regeneration.

1988 ◽  
Vol 1 (2) ◽  
pp. 123-132 ◽  
Author(s):  
Benoit Dewilde ◽  
Laurent Benel ◽  
Daniel-Jean Hartmann ◽  
Monique Adolphe

2007 ◽  
Vol 342-343 ◽  
pp. 853-856 ◽  
Author(s):  
Duk Young Jung ◽  
Yu Bong Kang ◽  
Toshie Tsuchiya ◽  
Sadami Tsutsumi

Accurate measurement of the mechanical properties of artificial or cultivated cartilage is a major factor for determining successive regeneration of defective soft tissues. In this study, we developed a novel method that enabled the bulk modulus (k-modulus) to be measured nondestructively using the relationship between volume and pressure of living soft tissues. In order to validate this method we estimated the bulk modulus of soft silicone rubbers using our new method and a conventional method. The results showed a 5 ~ 10% difference between the results obtained with the two methods. Our method was used subsequently to measure the mechanical properties of cultivated cartilage samples (collagen gel type), that had been incubated for four weeks in the presence or absence of human articular chondrocytes (HACs). Our experiments showed that cultivated cartilage tissues grown in the presence of HACs had a higher bulk modulus (120 ± 20 kPa) than samples grown without HACs (90 ± 15 kPa). The results indicated that our novel method offered an effective method for measurement of volume changes in minute living soft tissues, with the measurements having a high degree of accuracy and precision. Furthermore, this method has significant advantages over conventional approaches as it can be used to rapidly and accurately evaluate the strength of soft tissues during cultivation without causing damage to the specimen.


2017 ◽  
Vol 8 ◽  
pp. 204173141769754 ◽  
Author(s):  
Maria Sancho-Tello ◽  
Sara Martorell ◽  
Manuel Mata Roig ◽  
Lara Milián ◽  
MA Gámiz-González ◽  
...  

The clinical management of large-size cartilage lesions is difficult due to the limited regenerative ability of the cartilage. Different biomaterials have been used to develop tissue engineering substitutes for cartilage repair, including chitosan alone or in combination with growth factors to improve its chondrogenic properties. The main objective of this investigation was to evaluate the benefits of combining activated platelet-rich plasma with a stabilized porous chitosan scaffold for cartilage regeneration. To achieve this purpose, stabilized porous chitosan scaffolds were prepared using freeze gelation and combined with activated platelet-rich plasma. Human primary articular chondrocytes were isolated and cultured in stabilized porous chitosan scaffolds with and without combination to activated platelet-rich plasma. Scanning electron microscopy was used for the morphological characterization of the resulting scaffolds. Cell counts were performed in hematoxylin and eosin–stained sections, and type I and II collagen expression was evaluated using immunohistochemistry. Significant increase in cell number in activated platelet-rich plasma/stabilized porous chitosan was found compared with stabilized porous chitosan scaffolds. Chondrocytes grown on stabilized porous chitosan expressed high levels of type I collagen but type II was not detectable, whereas cells grown on activated platelet rich plasma/stabilized porous chitosan scaffolds expressed high levels of type II collagen and type I was almost undetectable. In summary, activated platelet-rich plasma increases nesting and induces the differentiation of chondrocytes cultured on stabilized porous chitosan scaffolds.


Cartilage ◽  
2017 ◽  
Vol 9 (2) ◽  
pp. 192-201 ◽  
Author(s):  
Takahiro Ogura ◽  
Akihiro Tsuchiya ◽  
Tom Minas ◽  
Shuichi Mizuno

Objective The effects of hydrostatic pressure (HP) on the matrix synthesis by human articular chondrocytes have been reported elsewhere. In order to optimize the production of extracellular matrix, we aimed to clarify the effects of repetitive HP on metabolic function by human articular chondrocytes. Design The human articular chondrocytes were expanded and embedded within a collagen gel/sponge scaffold. We incubated these constructs with and without HP followed by atmospheric pressure (AP) and repeated the second HP followed by AP over 14 days. Genomic, biochemical, and histological evaluation were performed to compare the effects of each regimen on the constructs. Results The gene expressions of collagen type II and aggrecan core protein were significantly upregulated with repetitive HP regimens compared with a single HP or AP by 14 days ( P < 0.01 or 0.05). Matrix metalloptoteinase-13 (MMP-13) in AP was upregulated significantly compared to other HP regimens at day 14 ( P < 0.01). No significant difference was observed in tissue inhibitor of metalloproteinases-II. Immunohistology demonstrated that application of HP (both repetitive and single) promoted the accumulation of specific extracellular matrix and reduced a MMP-13. A single regimen of HP followed by AP significantly increased the amount of sulfated glycosaminoglycan than that of the AP, whereas repetitive HP remained similar level of that of the AP. Conclusions Repetitive HP had a greater effect on anabolic activity by chondrocytes than a single HP regimen, which will be advantageous for producing a matrix-rich cell construct.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Marta R. Casanova ◽  
Hugo Osório ◽  
Rui L. Reis ◽  
Albino Martins ◽  
Nuno M. Neves

AbstractExtracellular vesicles (EVs) are being increasingly studied owing to its regenerative potential, namely EVs derived from human bone marrow mesenchymal stem cells (hBM-MSCs). Those can be used for controlling inflammation, repairing injury, and enhancing tissue regeneration. Differently, the potential of EVs derived from human articular chondrocytes (hACs) to promote cartilage regeneration has not been thoroughly investigated. This work aims to develop an EVs immobilization system capable of selectively bind EVs present in conditioned medium obtained from cultures of hACs or hBM-MSC. For that, an anti-CD63 antibody was immobilized at the surface of an activated and functionalized electrospun nanofibrous mesh. The chondrogenic potential of bound EVs was further assessed by culturing hBM-MSCs during 28 days under basal conditions. EVs derived from hACs cultured under differentiation medium or from chondrogenically committed hBM-MSCs induced a chondrogenic phenotype characterized by marked induction of SOX9, COMP, Aggrecan and Collagen type II, and matrix glycosaminoglycans synthesis. Indeed, both EVs immobilization systems outperformed the currently used chondroinductive strategies. These data show that naturally secreted EVs can guide the chondrogenic commitment of hBM-MSCs in the absence of any other chemical or genetic chondrogenic inductors based in medium supplementation.


2020 ◽  
Author(s):  
Heng Sun ◽  
Ya Wen ◽  
Weiliang Wu ◽  
Tian Qin ◽  
Chengrui An ◽  
...  

SummaryHuman limb skeletal system consists of both bone and cartilage which originated from fetal cartilage. However, the roadmap of chondrocyte divergent differentiation to bone and articular cartilage has yet to be established. Epiphysis possesses articular cartilage, growth plate and the secondary ossification center (SOC), making it an ideal model to uncover the trajectory of chondrocyte divergent differentiation. Here, we mapped differentiation trajectory of human chondrocyte during postnatal finger epiphysis development by using single-cell RNA sequencing. Our results uncovered that chondroprogenitors have two differentiation pathways to hypertrophic chondrocytes during ossification, and one pathway to articular chondrocytes for formation of cartilages. Interestingly, we found that, as an addition to the known typical endochondral ossification path from resting, proliferative to hypertrophic chondrocytes, there was a bypass by which chondroprogenitors differentiate into hypertrophic chondrocytes without proliferative stage. Furthermore, our results revealed two new chondrocyte subpopulations (bypass chondrocytes as it appeared in the ossification bypass, and ID1+ chondroblasts in articular chondrocyte path) during postnatal epiphysis development in addition to six well-known subpopulations. Overall, our study provides a comprehensive roadmap of chondrocyte differentiation in human epiphysis thereby expanding the knowledge of bone and articular cartilage, which could be utilized to design biotherapeutics for bone and articular cartilage regeneration.


2011 ◽  
Vol 193 (3) ◽  
pp. 551-564 ◽  
Author(s):  
Giovanna Nalesso ◽  
Joanna Sherwood ◽  
Jessica Bertrand ◽  
Thomas Pap ◽  
Manoj Ramachandran ◽  
...  

Activation and disruption of Wnt/β-catenin signaling both result in cartilage breakdown via unknown mechanisms. Here we show that both WNT-3A and the Wnt inhibitor DKK1 induced de-differentiation of human articular chondrocytes through simultaneous activation of β-catenin–dependent and independent responses. WNT-3A activates both the β-catenin–dependent canonical pathway and the Ca2+/CaMKII noncanonical pathways, with distinct transcriptional targets. WNT-3A promotes cell proliferation and loss of expression of the chondrocyte markers COL2A1, Aggrecan, and SOX9; however, proliferation and AXIN2 up-regulation are downstream of the canonical pathway and are rescued by DKK1, whereas the loss of differentiation markers is CaMKII dependent. Finally, we showed that in chondrocytes, the Ca2+/CaMKII-dependent and β-catenin–dependent pathways are reciprocally inhibitory, thereby explaining why DKK1 can induce loss of differentiation through de-repression of the CaMKII pathway. We propose a novel model in which a single WNT can simultaneously activate different pathways with distinct and independent outcomes and with reciprocal regulation. This offers an opportunity for selective pharmacological targeting.


2010 ◽  
Vol 26 (4) ◽  
pp. 419-433 ◽  
Author(s):  
Karsten Gavenis ◽  
Thomas Pufe ◽  
Lars Ove Brandenburg ◽  
Katharina Schiffl ◽  
Bernhard Schmidt-Rohlfing

The aim of the present study is to investigate the effects of BMP-7 released from polylactide microspheres on the appearance of various catabolic and inflammatory cytokines secreted by osteoarthritic chondrocytes cultivated in a collagen gel. Articular chondrocytes of 15 patients suffering from osteoarthritis are transferred to a collagen type-I gel. Additionally, BMP-7 encapsulated into polylactide microspheres (50 ng BMP-7/mL gel) is added. After 14 days, gene expression and protein appearance of various genes involved in matrix turnover and inflammation are investigated by immunohistochemical staining and RT-PCR and compared to untreated controls. TNF-α, MMP-13, IL-6, IL-1β, and VEGF gene expressions are decreased in the treatment group. In contrast, BMP-7-induced matrix synthesis is not affected, leaving collagen type-II (Col-II) gene expression to be elevated, while collagen type-I (Col-I) is decreased. In summary, controlled release of low concentrated BMP-7 from polylactide microspheres leads to a decrease in gene expression of the investigated inflammation and matrix degradation markers whereas matrix synthesis is induced.


2009 ◽  
Vol 17 (6) ◽  
pp. 695-704 ◽  
Author(s):  
N.M. Eltawil ◽  
C. De Bari ◽  
P. Achan ◽  
C. Pitzalis ◽  
F. Dell'Accio

Sign in / Sign up

Export Citation Format

Share Document