Patient-derived glial enriched progenitors repair functional deficits due to white matter stroke and vascular dementia in rodents

2021 ◽  
Vol 13 (590) ◽  
pp. eaaz6747
Author(s):  
Irene L. Llorente ◽  
Yuan Xie ◽  
Jose A. Mazzitelli ◽  
Emily A. Hatanaka ◽  
Jessica Cinkornpumin ◽  
...  

Subcortical white matter stroke (WMS) accounts for up to 30% of all stroke events. WMS damages primarily astrocytes, axons, oligodendrocytes, and myelin. We hypothesized that a therapeutic intervention targeting astrocytes would be ideally suited for brain repair after WMS. We characterize the cellular properties and in vivo tissue repair activity of glial enriched progenitor (GEP) cells differentiated from human-induced pluripotent stem cells, termed hiPSC-derived GEPs (hiPSC-GEPs). hiPSC-GEPs are derived from hiPSC–neural progenitor cells via an experimental manipulation of hypoxia inducible factor activity by brief treatment with a prolyl hydroxylase inhibitor, deferoxamine. This treatment permanently biases these cells to further differentiate toward an astrocyte fate. hiPSC-GEPs transplanted into the brain in the subacute period after WMS in mice migrated widely, matured into astrocytes with a prorepair phenotype, induced endogenous oligodendrocyte precursor proliferation and remyelination, and promoted axonal sprouting. hiPSC-GEPs enhanced motor and cognitive recovery compared to other hiPSC-differentiated cell types. This approach establishes an hiPSC-derived product with easy scale-up capabilities that might be effective for treating WMS.

Author(s):  
Prithiv K R Kumar

Renal failure is a major health problem. The mortality rate remain high despite of several therapies. The most complex of the renal issues are solved through stem cells. In this review, different mechanism for cure of chronic kidney injury along with cell engraftment incorporated into renal structures will be analysed. Paracrine activities of embryonic or induced Pluripotent stem cells are explored on the basis of stem cell-induced kidney regeneration. Several experiments have been conducted to advance stem cells to ensure the restoration of renal functions. More vigour and organised protocols for delivering stem cells is a possibility for advancement in treatment of renal disease. Also there is a need for pressing therapies to replicate the tissue remodelling and cellular repair processes suitable for renal organs. Stem cells are the undifferentiated cells that have the ability to multiply into several cell types. In vivo experiments on animal’s stem cells have shown significant improvements in the renal regeneration and functions of organs. Nevertheless more studies show several improvements in the kidney repair due to stem cell regeneration.


Author(s):  
Hugues Duffau

Investigating the neural and physiological basis of language is one of the most important challenges in neurosciences. Direct electrical stimulation (DES), usually performed in awake patients during surgery for cerebral lesions, is a reliable tool for detecting both cortical and subcortical (white matter and deep grey nuclei) regions crucial for cognitive functions, especially language. DES transiently interacts locally with a small cortical or axonal site, but also nonlocally, as the focal perturbation will disrupt the entire subnetwork sustaining a given function. Thus, in contrast to functional neuroimaging, DES represents a unique opportunity to identify with great accuracy and reproducibility, in vivo in humans, the structures that are actually indispensable to the function, by inducing a transient virtual lesion based on the inhibition of a subcircuit lasting a few seconds. Currently, this is the sole technique that is able to directly investigate the functional role of white matter tracts in humans. Thus, combining transient disturbances elicited by DES with the anatomical data provided by pre- and postoperative MRI enables to achieve reliable anatomo-functional correlations, supporting a network organization of the brain, and leading to the reappraisal of models of language representation. Finally, combining serial peri-operative functional neuroimaging and online intraoperative DES allows the study of mechanisms underlying neuroplasticity. This chapter critically reviews the basic principles of DES, its advantages and limitations, and what DES can reveal about the neural foundations of language, that is, the large-scale distribution of language areas in the brain, their connectivity, and their ability to reorganize.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


10.1038/nm837 ◽  
2003 ◽  
Vol 9 (4) ◽  
pp. 439-447 ◽  
Author(s):  
Marta C. Nunes ◽  
Neeta Singh Roy ◽  
H. Michael Keyoung ◽  
Robert R. Goodman ◽  
Guy McKhann ◽  
...  

2012 ◽  
Vol 49 (2) ◽  
pp. R89-R111 ◽  
Author(s):  
Clara V Alvarez ◽  
Montserrat Garcia-Lavandeira ◽  
Maria E R Garcia-Rendueles ◽  
Esther Diaz-Rodriguez ◽  
Angela R Garcia-Rendueles ◽  
...  

Embryonic, adult, artificially reprogrammed, and cancer…– there are various types of cells associated with stemness. Do they have something fundamental in common? Are we applying a common name to very different entities? In this review, we will revisit the characteristics that define ‘pluripotency’, the main property of stem cells (SCs). For each main type of physiological (embryonic and adult) or synthetic (induced pluripotent) SCs, markers and functional behavior in vitro and in vivo will be described. We will review the pioneering work that has led to obtaining human SC lines, together with the problems that have arisen, both in a biological context (DNA alterations, heterogeneity, tumors, and immunogenicity) and with regard to ethical concerns. Such problems have led to proposals for new operative procedures for growing human SCs of sufficiently high quality for use as models of disease and in human therapy. Finally, we will review the data from the first clinical trials to use various types of SCs.


2010 ◽  
Vol 7 (suppl_6) ◽  
Author(s):  
Nigel G. Kooreman ◽  
Joseph C. Wu

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the ability (i) to duplicate indefinitely while maintaining pluripotency and (ii) to differentiate into cell types of all three embryonic germ layers. These two properties of ESCs and iPSCs make them potentially suitable for tissue engineering and cell replacement therapy for many different diseases, including Parkinson's disease, diabetes and heart disease. However, one critical obstacle in the clinical application of ESCs or iPSCs is the risk of teratoma formation. The emerging field of molecular imaging is allowing researchers to track transplanted ESCs or iPSCs in vivo , enabling early detection of teratomas.


2000 ◽  
Vol 20 (11) ◽  
pp. 1529-1536 ◽  
Author(s):  
Eileen McCracken ◽  
V. Valeriani ◽  
C. Simpson ◽  
T. Jover ◽  
James McCulloch ◽  
...  

Lipid peroxidation and the cytotoxic by-product 4-hydroxynonenal (4-HNE) have been implicated in neuronal perikaryal damage. This study sought to determine whether 4-HNE was involved in white matter damage in vivo and in vitro. Immunohistochemical studies detected an increase in cellular and axonal 4-HNE within the ischemic region in the rat after a 24-hour period of permanent middle cerebral artery occlusion. Exogenous 4-HNE (3.2 nmol) was stereotaxically injected into the subcortical white matter of rats that were killed 24 hours later. Damaged axons detected by accumulation of β-amyloid precursor protein (β-APP) were observed transversing medially and laterally away from the injection site after intracerebral injection of 4-HNE. In contrast, in the vehicle-treated animals, axonal damage was restricted to an area immediately surrounding the injection site. Exogenous 4-HNE produced oligodendrocyte cell death in culture in a time-dependent and a concentration-dependent manner. After 4 hours, the highest concentration of 4-HNE (50 μmol/L) produced 100% oligodendrocyte cell death. Data indicate that lipid peroxidation and production of 4-HNE occurs in white matter after cerebral ischemia and the lipid peroxidation by-product 4-HNE is toxic to axons and oligodendrocytes.


2015 ◽  
Vol 36 (1) ◽  
pp. 187-198 ◽  
Author(s):  
Akihiro Shindo ◽  
Anna C Liang ◽  
Takakuni Maki ◽  
Nobukazu Miyamoto ◽  
Hidekazu Tomimoto ◽  
...  

Oligodendrocytes are one of the major cell types in cerebral white matter. Under normal conditions, they form myelin sheaths that encircle axons to support fast nerve conduction. Under conditions of cerebral ischemia, oligodendrocytes tend to die, resulting in white-matter dysfunction. Repair of white matter involves the ability of oligodendrocyte precursors to proliferate and mature. However, replacement of lost oligodendrocytes may not be the only mechanism for white-matter recovery. Emerging data now suggest that coordinated signaling between neural, glial, and vascular cells in the entire neurovascular unit may be required. In this mini-review, we discuss how oligodendrocyte lineage cells participate in signaling and crosstalk with other cell types to underlie function and recovery in various experimental models of subcortical white-matter injury.


2021 ◽  
Author(s):  
Nan He ◽  
Sirisha Thippabhotla ◽  
Cuncong Zhong ◽  
Zachary Greenberg ◽  
Liang Xu ◽  
...  

AbstractExtracellular vesicles (EVs), particularly exosomes, are emerging biomarker sources. However, due to heterogeneous populations secreted from diverse cell types, mapping EV multi-omic molecular information specifically to their pathogenesis origin for cancer biomarker identification is still extraordinary challenging. Herein, we introduced a novel 3D-structured nanographene immunomagnetic particles (NanoPoms) with unique flower pom-poms morphology and photo-click chemistry for specific marker-defined capture and release of intact small EVs. This specific EV isolation approach leads to the expanded identification of targetable cancer biomarkers with enhanced specificity and sensitivity, as demonstrated by multi-omic EV analysis of bladder cancer patient tissue fluids using the next generation sequencing of somatic DNA mutations, miRNAs, and the global proteome. The NanoPoms prepared sEVs also exhibit distinctive in vivo biodistribution patterns, highlighting the highly viable and integral quality. The developed method is simple and straightforward, and is applicable to nearly all types of biological fluids and amenable for scale up and high-throughput EV isolation.


Sign in / Sign up

Export Citation Format

Share Document