Targeting multiple cell death pathways extends the shelf life and preserves the function of human and mouse neutrophils for transfusion

2021 ◽  
Vol 13 (604) ◽  
pp. eabb1069
Author(s):  
Yuping Fan ◽  
Yan Teng ◽  
Fabien Loison ◽  
Aiming Pang ◽  
Anongnard Kasorn ◽  
...  

Clinical outcomes from granulocyte transfusion (GTX) are disadvantaged by the short shelf life and compromised function of donor neutrophils. Spontaneous neutrophil death is heterogeneous and mediated by multiple pathways. Leveraging mechanistic knowledge and pharmacological screening, we identified a combined treatment, caspases–lysosomal membrane permeabilization–oxidant–necroptosis inhibition plus granulocyte colony-stimulating factor (CLON-G), which altered neutrophil fate by simultaneously targeting multiple cell death pathways. CLON-G prolonged human and mouse neutrophil half-life in vitro from less than 1 day to greater than 5 days. CLON-G–treated aged neutrophils had equivalent morphology and function to fresh neutrophils, with no impairment to critical effector functions including phagocytosis, bacterial killing, chemotaxis, and reactive oxygen species production. Transfusion with stored CLON-G–treated 3-day-old neutrophils enhanced host defenses, alleviated infection-induced tissue damage, and prolonged survival as effectively as transfusion with fresh neutrophils in a clinically relevant murine GTX model of neutropenia-related bacterial pneumonia and systemic candidiasis. Last, CLON-G treatment prolonged the shelf life and preserved the function of apheresis-collected human GTX products both ex vivo and in vivo in immunodeficient mice. Thus, CLON-G treatment represents an effective and applicable clinical procedure for the storage and application of neutrophils in transfusion medicine, providing a therapeutic strategy for improving GTX efficacy.

2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi6-vi6
Author(s):  
Takashi Fujii ◽  
Shun Yamamuro ◽  
Masamichi Takahashi ◽  
Akihide Kondo ◽  
Yoshitaka Narita ◽  
...  

Abstract The therapeutic outcome of glioblastomas (GBMs) is still very poor. Therefore, invention of novel therapeutic methods against GBM cases is considered urgent. The antitumor effects of naturally-derived compounds are attracting attention recently, and therapeutic efficacy of curcumin, a plant-derived compound previously used for multiple purpose, has been indicated in many cancer systems; however, clinical application of curcumin is considered difficult because of its poor bioavailability (under 1 %). Curcumin monoglucuronide (CMG), a water-soluble prodrug of curcumin recently developed for overcoming this weakness, has been demonstrated excellent antitumor effects for several malignancies in vitro and in vivo; therefore, we investigated the effects of CMG against GBM cells. CMG induced cell death of human GBM cells lines (T98G, U251MG, and U87MG) by dose dependent manner by triggering multiple forms of cell death such as apoptosis and perthanatos. Immunoblotting of CMG-treated GBM cell lysates demonstrated activation of multiple cell death signaling. Furthermore, immunodeficiency mice harboring intracerebral U87MG cell xenografts systemically treated by CMG showed significantly prolonged survival compared with control mice. These results suggest CMG would be a novel therapeutic agent against GBM cases.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Denuja Karunakaran ◽  
Michele Geoffrion ◽  
Lihui Wei ◽  
Wei Gan ◽  
Ljubica Perisic ◽  
...  

Background: Atherosclerosis results from maladaptive inflammation driven primarily by macrophages, whose recruitment and proliferation drive plaque progression. In advanced plaques, macrophage death contributes centrally to the formation of plaque necrosis, which underlies the instability that promotes plaque rupture and myocardial infarction. As such, targeting macrophage cell death pathways may offer promise for the stabilization of vulnerable plaques. Necroptosis is a recently discovered pathway of programmed cell necrosis regulated by RIP3 and MLKL kinases that in contrast to apoptosis, induces a pro-inflammatory state. We hypothesize that atherogenic ligands within the plaque promote macrophage necroptosis and this process underlies necrotic core formation and drives atherosclerotic plaque instability. Results: In humans with unstable carotid atherosclerosis, expression of RIP3 and MLKL is increased and MLKL phosphorylation, a key step in the commitment to necroptosis, is detected in advanced atheromas. Investigation of the molecular mechanisms underlying plaque necroptosis showed that macrophages treated with oxidized LDL have increased expression of necroptotic genes RIP3 and MLKL through ROS-dependent activation of the promoter region and increased RIP3 and MLKL phosphorylation. Combined treatment with oxLDL and DAMPs (damage associated molecular patterns) amplified macrophage necroptotic cell death, indicating that additional inflammatory stimuli present in the lesion could act synergistically to promote necroptosis. Using a radiotracer developed with the necroptosis inhibitor Nec-1, we show that 123 I-Nec1 localizes specifically to atherosclerotic plaques in Apoe-/- mice, and its uptake is tightly correlated to lesion areas by ex vivo nuclear imaging. Furthermore, treatment of Apoe-/- mice with established atherosclerosis with Nec-1 reduced lesion size and markers of plaque instability, including necrotic core formation. Conclusions: Our findings offer molecular insight into the mechanisms of macrophage cell death that drive necrotic core formation in atherosclerosis and suggest that this pathway can be used as both a diagnostic and therapeutic tool for the treatment of unstable atherosclerosis.


2021 ◽  
Vol 55 (1) ◽  
pp. 235-263
Author(s):  
Daichao Xu ◽  
Chengyu Zou ◽  
Junying Yuan

The receptor-interacting protein kinase 1 (RIPK1) is recognized as a master upstream regulator that controls cell survival and inflammatory signaling as well as multiple cell death pathways, including apoptosis and necroptosis. The activation of RIPK1 kinase is extensively modulated by ubiquitination and phosphorylation, which are mediated by multiple factors that also control the activation of the NF-κB pathway. We discuss current findings regarding the genetic modulation of RIPK1 that controls its activation and interaction with downstream mediators, such as caspase-8 and RIPK3, to promote apoptosis and necroptosis. We also address genetic autoinflammatory human conditions that involve abnormal activation of RIPK1. Leveraging these new genetic and mechanistic insights, we postulate how an improved understanding of RIPK1 biology may support the development of therapeutics that target RIPK1 for the treatment of human inflammatory and neurodegenerative diseases.


Oncogene ◽  
2004 ◽  
Vol 23 (16) ◽  
pp. 2746-2756 ◽  
Author(s):  
Marja Jäättelä

2019 ◽  
Vol 33 (10) ◽  
pp. 10680-10691 ◽  
Author(s):  
Myles R. McCrary ◽  
Michael Q. Jiang ◽  
Michelle M. Giddens ◽  
James Y. Zhang ◽  
Sharon Owino ◽  
...  

2010 ◽  
Vol 299 (3) ◽  
pp. L312-L322 ◽  
Author(s):  
Isabelle Métrailler-Ruchonnet ◽  
Alessandra Pagano ◽  
Stéphanie Carnesecchi ◽  
Karim Khatib ◽  
Pedro Herrera ◽  
...  

Bcl-2 is an anti-apoptotic molecule preventing oxidative stress damage and cell death. We have previously shown that Bcl-2 is able to prevent hyperoxia-induced cell death when overexpressed in a murine fibrosarcoma cell line L929. We hypothesized that its specific overexpression in pulmonary epithelial type II cells could prevent hyperoxia-induced lung injury by protecting the epithelial side of the alveolo-capillary barrier. In the present work, we first showed that in vitro Bcl-2 can rescue murine pulmonary epithelial cells (MLE12) from oxygen-induced cell apoptosis, as shown by analysis of LDH release, annexin V/propidium staining, and caspase-3 activity. We then generated transgenic mice overexpressing specifically Bcl-2 in lung epithelial type II cells under surfactant protein C (SP-C) promoter (Tg-Bcl-2) and exposed them to hyperoxia. Bcl-2 did not hinder hyperoxia-induced mitochondria and DNA oxidative damage of type II cell in vivo. Accordingly, lung damage was identical in both Tg-Bcl-2 and littermate mice strains, as measured by lung weight, bronchoalveolar lavage, and protein content. Nevertheless, we observed a significant lower number of TUNEL-positive cells in type II cells isolated from Tg-Bcl-2 mice exposed to hyperoxia compared with cells isolated from littermate mice. In summary, these results show that although Bcl-2 overexpression is able to prevent hyperoxia-induced cell death at single cell level in vitro and ex vivo, it is not sufficient to prevent cell death of parenchymal cells and to protect the lung from acute damage in mice.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1460-1460
Author(s):  
Laura A Paganessi ◽  
Lydia Luy Tan ◽  
Sucheta Jagan ◽  
Robin Frank ◽  
Antonio M. Jimenez ◽  
...  

Abstract Abstract 1460 Many patients with hematologic malignancies choose hematopoietic stem cell transplantation (HSCT) as a treatment option. The most common source of Hematopoietic Stem and Progenitor Cells (HSC/HPC) for adult recipients is mobilized Peripheral Blood (mobPB). Limited quantities of HSC/HPC obtainable from an umbilical cord restricts its use for adult recipients. Ex vivo treatment of umbilical cord blood (CB) with cytokines and growth factors is being used to expand the population of cord blood HSC/HPCs in hopes of obtaining higher numbers of transplantable CB cells. In addition, cytokines and growth factors are often utilized post-transplant in an attempt to improve the rate of immune reconstitution. It has been previously reported that granulocyte-colony-stimulating factor (G-CSF), and granulocyte-macrophage-colony-stimulating factor (GM-CSF) up-regulate CD26 (dipeptidyl peptidase IV/DPPIV) activity on freshly isolated CD34+ CB cells within 18 hours of culture [Christopherson, et al. Exp Hematol 2006]. Separate studies have demonstrated that treatment of uncultured CD34+ CB cells with the CD26 inhibitor Diprotin A increases transplant efficiency into immunodeficient mice [Christopherson, et al. Stem Cells Dev. 2007]. We evaluated here the in vitro and in vivo effects of CD26 inhibitor treatment on previously frozen CB CD34+ cells cultured ex vivo with G-CSF, GM-CSF or SCF for 48 hours. We examined CD26 expression by multivariate flow cytometry, CD26 activity using the established chromogenic CD26 substrate, Gly-Pro-p-nitroanilide (Gly-Pro-pNA), and SDF-1α induced migration and adhesion. In vivo, we examined long-term engraftment in NSG (NOD/SCID/IL2Rγnull) immunodeficient mice. After 48 hours of culture with cytokine treatment we observed altered CD26 expression on CD34+ CB cells. There was both an increase in the percentage of CD26+ cells and the mean fluorescence intensity (MFI) of CD26. Additionally, CD26 activity was 1.20, 1.59, 1.58, and 1.65 fold greater after ex vivo culture in untreated, G-CSF, GM-CSF and SCF treated CB CD34+ cells respectively compared to the CD26 activity prior to culture. The increase in CD26 activity as a result of treatment with G-CSF (p≤ 0.01), GM-CSF (p≤ 0.05) or SCF (p≤ 0.01) was significantly higher than the CD26 activity measured in the untreated cells following 48 hours of culture. Post-culture treatment with the CD26 inhibitor, Diprotin A, significantly improved SDF-1α induced migration and adhesion of cultured CD34+ CB cells in vitro, particularly in G-CSF treated cells (p≤ 0.05). Diprotin A treatment of CD34+ CB cells previously treated with G-CSF also significantly increased the long-term in vivo engraftment of stem and progenitor (CD34+CD38-, p=0.032), monocyte (CD14+, p=0.015), and megakaryocyte/platelet (CD61+, p=0.020) cells in the bone marrow of NSG mice. CD26 has been previously shown to cleave SDF-1 (stromal cell-derived factor 1/CXCL12). After cleavage, SDF-1 retains its ability to bind to its receptor (CXCR4) but no longer signals. SDF-1 is a powerful chemoattractant and has been shown to be important in mobilization, homing, and engraftment of HSCs and HPCs. This study demonstrates the influence of ex vivo culture and the effect of cytokine treatment on CD26 activity and subsequent biologic function related to HSCT. All three cytokines studied caused a significant increase in enzymatic activity at 48 hours compared to untreated cells. The up-regulation of CD26 protein expression caused by cytokine treatment for 48 hours, in particular G-CSF, had a significant impact on SDF-1 stimulated migration and adhesion. This was demonstrated in vitro by the improvement in cell function after CD26 inhibitor treatment and in vivo by the improved engraftment seen in the G-CSF treated cells with CD26 inhibitor treatment. These experiments suggest that combining CD26 inhibitor treatment following culture with G-CSF treatment during culture has the greatest overall benefit in engraftment outcome. By increasing our understanding of the effects of exogenous cytokines during culture on trafficking, ex vivo expanded CB has the potential to become a more effective means of not only increasing numbers of CB HSC/HPCs but also engraftment outcomes. This would ultimately allow expanded cord blood to become a more viable option for HSCT. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 2 (2) ◽  
pp. e122-e122 ◽  
Author(s):  
L Lembo-Fazio ◽  
G Nigro ◽  
G Noël ◽  
G Rossi ◽  
F Chiara ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2644-2644
Author(s):  
Judith Lind ◽  
Sonia Vallet ◽  
Karoline Kollmann ◽  
Osman Aksoy ◽  
Vincent Sunder-Plassmann ◽  
...  

Abstract INTRODUCTION Transcription factors (TFs) are convergence points of signaling cascades that coordinate cell differentiation, proliferation and survival and are commonly deregulated in cancer, including multiple myeloma (MM). They contribute to the initiation of MM and promote tumor cell growth and drug resistance. Both cMyc, a merging point of the PI3K-, and JunB, a merging point of the MEK/MAPK-signaling pathway, play pivotal roles in MM. Exciting novel approaches to inhibit TFs like proteolysis-targeting-chimera (PROTAC) promise to lead to selective tumor cell death with little/no consequence for normal cells. However, redundancy phenomena of transcriptional programs are likely to challenge their efficacy. Here, we report our final results on combined targeting of distinct c-Myc & JunB transcriptional programs for MM therapy. METHODS MM cell lines and patient MM cells were analyzed. Following CRISPR-loss-of-function screens for cMyc & JunB across MM cell lines and correlation analyses in MM patient datasets, the functional relevance of BRD4/c-Myc- and MEK/JunB-induced TF programs was delineated using genomic and chemical approaches in 2D and 3D models of the bone marrow (BM) microenvironment. Specifically, effects of single or combined targeting of cMyc- and JunB-induced TF-programs were analyzed by flow cytometry, western blot, RNAseq, qPCR and luciferase assays. In vitro and ex vivo results were finally verified in a MM xenograft mouse model. RESULTS While CRISPR loss-of-function screens across various MM cell lines confirmed their growth dependency on cMyc and JunB, we did not observe correlative expression levels among these TFs, neither in the publicly available GSE6477 nor in the CoMMpass dataset. In contrast, a significant positive correlation was observed between Brd4 and cMyc, and MEK and JunB expression levels, respectively. The existence of two distinct Brd4/cMyc and MEK/JunB transcriptional programs in MM cells was subsequently supported by a lack of changes in cMyc mRNA/protein levels and resultant transcriptional activity upon JunB knockdown, and vice versa. Likewise, MZ-1, a novel PROTAC which targets Brd4, resulted in the inhibition of BMSC/IL-6- induced cMyc- but not JunB- upregulation. Conversely, neither the MEK inhibitor trametinib nor doxycycline-induced knockdown of BMSC/IL-6- induced JunB upregulation in TetshJunB/MM.1S cells reduced Brd4/c-Myc mRNA/protein levels. Importantly, the activity of MZ-1 and trametinib was predicted by Brd4 and JunB expression levels using mathematical models, respectively. Further, combination of MZ-1 with trametinib or JunB knockdown synergistically inhibited tumor cell proliferation, and induced cell death in a 2D and a dynamic 3D model of the MM-BM milieu. Finally, our in vitro and ex vivo results were confirmed in vivo, utilizing BMSC:TetshJunB/MM.1S vs. BMSC:TetshSCR/MM.1S-carrying NSG mice treated with MZ-1 with/without doxycycline or trametinib. CONCLUSION In summary, our data demonstrate for the first time the existence of non-overlapping cMyc and JunB-regulated TF programs providing a rationale for combined cMyc:JunB targeting treatment strategies in MM. Disclosures Vallet: Pfizer: Honoraria; MSD: Honoraria; Roche Pharmaceuticals: Consultancy. Podar: Celgene: Consultancy, Honoraria; Roche Pharmaceuticals: Research Funding; Janssen Pharmaceuticals: Consultancy, Honoraria; Amgen Inc.: Consultancy, Honoraria.


Sign in / Sign up

Export Citation Format

Share Document