A Correction to the Perspective Titled "Human ITPK1: A Reversible Inositol Phosphate Kinase/Phosphatase That Links Receptor-Dependent Phospholipase C to Ca2+-Activated Chloride Channels" by A. Saiardi and S. Cockcroft

2008 ◽  
Vol 1 (7) ◽  
pp. er1-er1 ◽  
1997 ◽  
Vol 327 (2) ◽  
pp. 461-472 ◽  
Author(s):  
J. Luis GARCÍA ◽  
A. Juan ROSADO ◽  
Antonio GONZÁLEZ ◽  
T. Robert JENSEN

Recent studies show that the effects of some oncogenes, integrins, growth factors and neuropeptides are mediated by tyrosine phosphorylation of the cytosolic kinase p125 focal adhesion kinase (p125FAK) and the cytoskeletal protein paxillin. Recently we demonstrated that cholecystokinin (CCK) C-terminal octapeptide (CCK-8) causes tyrosine phosphorylation of p125FAK and paxillin in rat pancreatic acini. The present study was aimed at examining whether protein kinase C (PKC) activation, calcium mobilization, cytoskeletal organization and small G-protein p21rho activation play a role in mediating the stimulation of tyrosine phosphorylation by CCK-8 in acini. CCK-8-stimulated phosphorylation of p125FAK and paxillin reached a maximum within 2.5 min. The CCK-8 dose response for causing changes in the cytosolic calcium concentration ([Ca2+]i) was similar to that for p125FAK and paxillin phosphorylation, and both were to the left of that for receptor occupation and inositol phosphate production. PMA increased tyrosine phosphorylation of both proteins. The calcium ionophore A23187 caused only 25% of the maximal stimulation caused by CCK-8. GF109203X, a PKC inhibitor, completely inhibited phosphorylation with PMA but had no effect on the response to CCK-8. Depletion of [Ca2+]i by thapsigargin had no effect on CCK-8-stimulated phosphorylation. Pretreatment with both GF109203X and thapsigargin decreased CCK-8-stimulated phosphorylation of both proteins by 50%. Cytochalasin D, but not colchicine, completely inhibited CCK-8- and PMA-induced p125FAK and paxillin phosphorylation. Treatment with Clostridium botulinum C3 transferase, which inactivates p21rho, caused significant inhibition of CCK-8-stimulated p125FAK and paxillin phosphorylation. These results demonstrate that, in pancreatic acini, CCK-8 causes rapid p125FAK and paxillin phosphorylation that is mediated by both phospholipase C-dependent and -independent mechanisms. For this tyrosine phosphorylation to occur, the integrity of the actin, but not the microtubule, cytoskeleton is essential as well as the activation of p21rho.


1990 ◽  
Vol 272 (2) ◽  
pp. 297-303 ◽  
Author(s):  
N E Olashaw ◽  
S G Rhee ◽  
W J Pledger

Previous studies have demonstrated enhanced phosphorylation of phospholipase C-tau (PLC-tau), a key regulatory enzyme in phosphoinositide metabolism, in cells treated with platelet-derived growth factor (PDGF) and epidermal growth factor, both of which act via specific receptor tyrosine kinases. Our studies on BALB/c-3T3 cells show that agents that promote cellular cyclic AMP accumulation also increase the phosphorylation, specifically the serine phosphorylation, of this enzyme. Increased phosphorylation of PLC-t (2-3-fold) was evident within 5-10 min of addition of isobutylmethylxanthine (IBMX) and either cholera toxin or forskolin to cells, and persisted for at least 3 h. Treatment of cells with cyclic AMP agonists also enhanced, with similar kinetics, the phosphorylation of a 76 kDa protein co-precipitated by anti-PLC-tau monoclonal antibodies. Brief exposure of cells to cholera toxin/IBMX or forskolin/IBMX decreased inositol phosphate formation induced by the GTP-binding protein (G-protein) activator aluminium fluoride by approx. 50%, but was without effect on PDGF-stimulated inositol phosphate formation. These findings suggest that PLC-tau, and perhaps the 76 kDa co-precipitated protein, are substrates of cyclic AMP-dependent protein kinase in BALB/c-3T3 cells: however, the lack of effect of cyclic AMP elevation on PDGF-stimulated inositol phosphate formation indicates that the intrinsic activity of PLC-tau is unaltered by cyclic AMP-mediated phosphorylation.


1993 ◽  
Vol 289 (2) ◽  
pp. 387-394 ◽  
Author(s):  
M Biffen ◽  
M Shiroo ◽  
D R Alexander

The possible involvement of G-proteins in T cell antigen-receptor complex (TCR)-mediated inositol phosphate production was investigated in HPB-ALL T-cells, which were found to express the phospholipase C gamma 1 and beta 3 isoforms. Cross-linking the CD3 antigen on streptolysin-O-permeabilized cells stimulated a dose-dependent increase in inositol phosphate production, as did addition of guanosine 5′-[gamma-thio]triphosphate (GTP[S]) or vanadate, a phosphotyrosine phosphatase inhibitor. It was possible, therefore, that the CD3-antigen-mediated production of inositol phosphates was either via a G-protein-dependent mechanism or by stimulation of protein tyrosine phosphorylation. The CD3-induced inositol phosphate production was potentiated by addition of vanadate, but not by addition of GTP[S]. Guanosine 5′-[beta-thio]diphosphate (GDP[S]) inhibited the rise in inositol phosphates induced by GTP[S], vanadate or cross-linking the CD3 antigen. The increase in protein tyrosine phosphorylation stimulated by vanadate or the OKT3 monoclonal antibody was not observed in the presence of GDP[S], showing that in permeabilized HPB-ALL cells, GDP[S] inhibits the actions of tyrosine kinases as well as G-protein function. Addition of either ADP[S] or phenylarsine oxide inhibited CD3- and vanadate-mediated increases in both tyrosine phosphorylation and inositol phosphate production, but did not inhibit GTP[S]-stimulated inositol phosphate production. On the other hand, pretreatment of cells with phorbol 12,13-dibutyrate inhibited subsequent GTP[S]-stimulated inositol phosphate production but did not inhibit significantly inositol phosphate production stimulated by either OKT3 F(ab')2 fragments or vanadate. Our results are consistent with the CD3 antigen stimulating inositol phosphate production by increasing the level of protein tyrosine phosphorylation, but not by activating a G-protein.


2015 ◽  
Vol 112 (51) ◽  
pp. 15660-15665 ◽  
Author(s):  
Andrew M. Seeds ◽  
Marco M. Tsui ◽  
Christine Sunu ◽  
Eric P. Spana ◽  
John D. York

Inositol phosphate kinase 2 (Ipk2), also known as IP multikinase IPMK, is an evolutionarily conserved protein that initiates production of inositol phosphate intracellular messengers (IPs), which are critical for regulating nuclear and cytoplasmic processes. Here we report that Ipk2 kinase activity is required for the development of the adult fruit fly epidermis. Ipk2 mutants show impaired development of their imaginal discs, the primordial tissues that form the adult epidermis. Although disk tissue seems to specify normally during early embryogenesis, loss of Ipk2 activity results in increased apoptosis and impairment of proliferation during larval and pupal development. The proliferation defect is in part attributed to a reduction in JAK/STAT signaling, possibly by controlling production or secretion of the pathway’s activating ligand, Unpaired. Constitutive activation of the JAK/STAT pathway downstream of Unpaired partially rescues the disk growth defects in Ipk2 mutants. Thus, IP production is essential for proliferation of the imaginal discs, in part, by regulating JAK/STAT signaling. Our work demonstrates an essential role for Ipk2 in producing inositide messengers required for imaginal disk tissue maturation and subsequent formation of adult body structures and provides molecular insights to signaling pathways involved in tissue growth and stability during development.


1998 ◽  
Vol 336 (2) ◽  
pp. 491-500 ◽  
Author(s):  
Fumikazu OKAJIMA ◽  
Koichi SATO ◽  
Hideaki TOMURA ◽  
Atsushi KUWABARA ◽  
Hiromi NOCHI ◽  
...  

We examined the mechanism of action of lysophosphatidylcholine (LPC), which is suggested to be involved in the pathogenesis of atherosclerosis and inflammatory disorders, in HL-60 leukaemia cells. Extracellular 1-palmitoyl LPC increased the intracellular Ca2+ concentration in association with production of inositol phosphate. These actions of LPC were markedly inhibited by treatment of the cells with pertussis toxin and U73122, a phospholipase C inhibitor. The lipid-induced stimulation of the phospholipase C/Ca2+ system was also attenuated in the dibutyryl cAMP-induced differentiated (neutrophil-like) cells, in which phospholipase C activation induced by NaF or formyl-Met-Leu-Phe was enhanced. In contrast with the stimulatory action of 1-palmitoyl LPC, 1-stearoyl LPC was inhibitory for the phospholipase C/Ca2+ system stimulated by NaF as well as by 1-palmitoyl LPC or other Ca2+-mobilizing agonists. In a cell-free system, only an inhibitory effect on phospholipase C activity was observed even by 1-palmitoyl LPC; 1-stearoyl LPC was more inhibitive than 1-palmitoyl LPC. Taken together, these results suggest that atherogenic and inflammatory LPC exerts both stimulatory and inhibitory actions on the phospholipase C/Ca2+ system depending on the species of fatty acid residue of the lipid; the stimulatory effect is possibly mediated through G-protein-coupled receptors; the inhibitory effect might be caused by dysfunction of the components involved in the enzyme system owing to the amphiphilic nature of the lipid. 1-Palmitoyl LPC prefers the former receptor stimulation at least in intact cells, but 1-stearoyl LPC preferentially exerts the latter inhibitory action.


1992 ◽  
Vol 284 (2) ◽  
pp. 447-455 ◽  
Author(s):  
F M McConnell ◽  
S B Shears ◽  
P J L Lane ◽  
M S Scheibel ◽  
E A Clark

Cross-linking of surface immunoglobulin (Ig) receptors on human B cells leads to the activation of a tyrosine kinase. The activated tyrosine kinase subsequently phosphorylates a number of substrates, including phospholipase C-gamma. This enzyme breaks down phosphoinositol bisphosphate to form two intracellular messengers, diacylglycerol and inositol 1,4,5-trisphosphate, leading to the activation of protein kinase C and the release of intracellular Ca2+ respectively. We have used h.p.l.c. and flow cytometry to measure accurately the inositol phosphate turnover and Ca2+ release in anti-Ig-stimulated human B cells. In particular, we have examined the effect of dose of the cross-linking antibody on the two responses. The identity of putative messenger inositol phosphates has been verified by structural analysis, and the amounts of both inositol phosphates and Ca2+ present have been quantified. In the Ramos Burkitt lymphoma, which is very sensitive to stimulus through its Ig receptors, both inositol phosphate production and Ca2+ release were found to be related to the dose of anti-Ig antibody applied. This suggests that phospholipase C-mediated signal transduction in human B cells converts the degree of cross-linking of the immunoglobulin receptor quantitatively into intracellular signals.


Sign in / Sign up

Export Citation Format

Share Document