scholarly journals Comparison of In Vitro Activities of Fluoroquinolone-Like 2,4- and 1,3-Diones

2010 ◽  
Vol 54 (7) ◽  
pp. 3011-3014 ◽  
Author(s):  
Lisa M. Oppegard ◽  
Kathryn R. Streck ◽  
Jonathan D. Rosen ◽  
Heidi A. Schwanz ◽  
Karl Drlica ◽  
...  

ABSTRACT Bacterial resistance presents a difficult issue for fluoroquinolone treatment of bacterial infections. In previous work, we reported that 8-methoxy-quinazoline-2,4-diones are active against quinolone-resistant mutants of Escherichia coli. Here, we demonstrate the activity of a representative 8-methoxy-quinazoline-2,4-dione against quinolone-resistant gyrases. Furthermore, 8-methoxy-quinazoline-2,4-dione and other diones are shown to inhibit Staphylococcus aureus gyrase and topoisomerase IV with similar degrees of efficacy, suggesting that the diones might act as dual-targeting agents against S. aureus.

1996 ◽  
Vol 40 (12) ◽  
pp. 2714-2720 ◽  
Author(s):  
F Blanche ◽  
B Cameron ◽  
F X Bernard ◽  
L Maton ◽  
B Manse ◽  
...  

Staphylococcus aureus gyrA and gyrB genes encoding DNA gyrase subunits were cloned and coexpressed in Escherichia coli under the control of the T7 promoter-T7 RNA polymerase system, leading to soluble gyrase which was purified to homogeneity. Purified gyrase was catalytically indistinguishable from the gyrase purified from S. aureus and did not contain detectable amounts of topoisomerases from the E. coli host. Topoisomerase IV subunits GrlA and GrlB from S. aureus were also expressed in E. coli and were separately purified to apparent homogeneity. Topoisomerase IV, which was reconstituted by mixing equimolar amounts of GrlA and GrlB, had both ATP-dependent decatenation and DNA relaxation activities in vitro. This enzyme was more sensitive than gyrase to inhibition by typical fluoroquinolone antimicrobial agents such as ciprofloxacin or sparfloxacin, adding strong support to genetic studies which indicate that topoisomerase IV is the primary target of fluoroquinolones in S. aureus. The results obtained with ofloxacin suggest that this fluoroquinolone could also primarily target gyrase. No cleavable complex could be detected with S. aureus gyrase upon incubation with ciprofloxacin or sparfloxacin at concentrations which fully inhibit DNA supercoiling. This suggests that these drugs do not stabilize the open DNA-gyrase complex, at least under standard in vitro incubation conditions, but are more likely to interfere primarily with the DNA breakage step, contrary to what has been reported with E. coli gyrase. Both S. aureus gyrase-catalyzed DNA supercoiling and S. aureus topoisomerase IV-catalyzed decatenation were dramatically stimulated by potassium glutamate or aspartate (500- and 50-fold by 700 and 350 mM glutamate, respectively), whereas topoisomerase IV-dependent DNA relaxation was inhibited 3-fold by 350 mM glutamate. The relevance of the effect of dicarboxylic amino acids on the activities of type II topoisomerases is discussed with regard to the intracellular osmolite composition of S. aureus.


2008 ◽  
Vol 52 (7) ◽  
pp. 2313-2323 ◽  
Author(s):  
Gregory T. Robertson ◽  
Eric J. Bonventre ◽  
Timothy B. Doyle ◽  
Qun Du ◽  
Leonard Duncan ◽  
...  

ABSTRACT Rifamycins have proven efficacy in the treatment of persistent bacterial infections. However, the frequency with which bacteria develop resistance to rifamycin agents restricts their clinical use to antibiotic combination regimens. In a program directed toward the synthesis of rifamycins with a lower propensity to elicit resistance development, a series of compounds were prepared that covalently combine rifamycin and quinolone pharmacophores to form stable hybrid antibacterial agents. We describe mode-of-action studies with Staphylococcus aureus of CBR-2092, a novel hybrid that combines the rifamycin SV and 4H-4-oxo-quinolizine pharmacophores. In biochemical studies, CBR-2092 exhibited rifampin-like potency as an inhibitor of RNA polymerase, was an equipotent (balanced) inhibitor of DNA gyrase and DNA topoisomerase IV, and retained activity against a prevalent quinolone-resistant variant. Macromolecular biosynthesis studies confirmed that CBR-2092 has rifampin-like effects on RNA synthesis in rifampin-susceptible strains and quinolone-like effects on DNA synthesis in rifampin-resistant strains. Studies of mutant strains that exhibited reduced susceptibility to CBR-2092 further substantiated RNA polymerase as the primary cellular target of CBR-2092, with DNA gyrase and DNA topoisomerase IV being secondary and tertiary targets, respectively, in strains exhibiting preexisting rifampin resistance. In contrast to quinolone comparator agents, no strains with altered susceptibility to CBR-2092 were found to exhibit changes consistent with altered efflux properties. The combined data indicate that CBR-2092 may have potential utility in monotherapy for the treatment of persistent S. aureus infections.


2020 ◽  
Vol 17 (2) ◽  
pp. 136-143
Author(s):  
Yan-Ling Tang ◽  
Yong-Kun Li ◽  
Min-Xin Li ◽  
Hui Gao ◽  
Xiao-Bi Yang ◽  
...  

Background: Infection is a global threat to human health, and there is an urgent need to develop new effective antibacterial drugs to treat bacterial infections. Objective: To study the antibacterial activity of piperazine substituted chalcone sulphonamides. Materials and Methods: A series of novel piperazine substituted chalcone sulphonamides have been prepared, and in vitro antibacterial activity against Staphylococcus aureus, Bacillus subtilis and Escherichia coli strains were evaluated. Results: The results showed that derivatives 6a, 6c and 6h displayed good antibacterial activity against Bacillus subtilis with MIC values of 4.0-8.0 mg/mL. Conclusion: Piperazine substituted chalcone sulphonamides may be used as potential antibacterial agents.


2007 ◽  
Vol 51 (7) ◽  
pp. 2445-2453 ◽  
Author(s):  
Jijun Cheng ◽  
Jane A. Thanassi ◽  
Christy L. Thoma ◽  
Barton J. Bradbury ◽  
Milind Deshpande ◽  
...  

ABSTRACT Heteroaryl isothiazolones (HITZs) are antibacterial agents that display excellent in vitro activity against Staphylococcus aureus. We recently identified a series of these compounds that show potent bactericidal activities against methicillin-resistant Staphylococcus aureus (MRSA). We report here the results of in vitro resistance studies that reveal potential underlying mechanisms of action. HITZs selected gyrA mutations exclusively in first-step mutants of wild-type S. aureus, indicating that in contrast to the case with most quinolones, DNA gyrase is the primary target. The compounds displayed low mutation frequencies (10−9 to 10−10) at concentrations close to the MICs and maintained low MICs (≤0.016 μg/ml) against mutants with single mutations in either gyrA or grlA (parC). These data suggested that HITZs possess significant inhibitory activities against target enzymes, DNA gyrase and topoisomerase IV. This dual-target inhibition was supported by low 50% inhibitory concentrations against topoisomerase IV as measured in a decatenation activity assay and against DNA gyrase as measured in a supercoiling activity assay. Good antibacterial activities (≤1 μg/ml) against staphylococcal gyrA grlA double mutants, as well as low frequencies (10−9 to 10−10) of selection of still higher-level mutants, also suggested that HITZs remained active against mutant enzymes. We further demonstrated that HITZs exhibit good inhibition of both S. aureus mutant enzymes and thus continue to possess a novel dual-targeting mode of action against these mutant strains. In stepwise acquisition of mutations, HITZs selected quinolone resistance determining region mutations gyrA(Ser84Leu), grlA(Ser80Phe), grlA(Ala116Val), and gyrA(Glu88Lys) sequentially, suggesting that the corresponding amino acids are key amino acids involved in the binding of HITZs to topoisomerases. The overall profile of these compounds suggests the potential utility of HITZs in combating infections caused by S. aureus, including multidrug-resistant MRSA.


2000 ◽  
Vol 44 (11) ◽  
pp. 3112-3117 ◽  
Author(s):  
Victoria J. Heaton ◽  
Jane E. Ambler ◽  
L. Mark Fisher

ABSTRACT We investigated the roles of DNA gyrase and topoisomerase IV in determining the susceptibility of Streptococcus pneumoniaeto gemifloxacin, a novel fluoroquinolone which is under development as an antipneumococcal drug. Gemifloxacin displayed potent activity against S. pneumoniae 7785 (MIC, 0.06 μg/ml) compared with ciprofloxacin (MIC, 1 to 2 μg/ml). Complementary genetic and biochemical approaches revealed the following. (i) The gemifloxacin MICs for isogenic 7785 mutants bearing either parC orgyrA quinolone resistance mutations were marginally higher than wild type at 0.12 to 0.25 μg/ml, whereas the presence of both mutations increased the MIC to 0.5 to 1 μg/ml. These data suggest that both gyrase and topoisomerase IV contribute significantly as gemifloxacin targets in vivo. (ii) Gemifloxacin selected first-stepgyrA mutants of S. pneumoniae 7785 (gemifloxacin MICs, 0.25 μg/ml) encoding Ser-81 to Phe or Tyr, or Glu-85 to Lys mutations. These mutants were cross resistant to sparfloxacin (which targets gyrase) but not to ciprofloxacin (which targets topoisomerase IV). Second-step mutants (gemifloxacin MICs, 1 μg/ml) exhibited an alteration in parC resulting in changes of ParC hot spot Ser-79 to Phe or Tyr. Thus, gyrase appears to be the preferential in vivo target. (iii) Gemifloxacin was at least 10- to 20-fold more effective than ciprofloxacin in stabilizing a cleavable complex (the cytotoxic lesion) with either S. pneumoniaegyrase or topoisomerase IV enzyme in vitro. These data suggest that gemifloxacin is an enhanced affinity fluoroquinolone that acts against gyrase and topoisomerase IV in S. pneumoniae, with gyrase the preferred in vivo target. The marked potency of gemifloxacin against wild type and quinolone-resistant mutants may accrue from greater stabilization of cleavable complexes with the target enzymes.


1996 ◽  
Vol 40 (12) ◽  
pp. 2691-2697 ◽  
Author(s):  
T D Gootz ◽  
R Zaniewski ◽  
S Haskell ◽  
B Schmieder ◽  
J Tankovic ◽  
...  

The MICs of trovafloxacin, ciprofloxacin, ofloxacin, and sparfloxacin at which 90% of isolates are inhibited for 55 isolates of pneumococci were 0.125, 1, 4, and 0.5 microgram/ml, respectively. Resistant mutants of two susceptible isolates were selected in a stepwise fashion on agar containing ciprofloxacin at 2 to 10 times the MIC. While no mutants were obtained at the highest concentration tested, mutants were obtained at four times the MIC of ciprofloxacin (4 micrograms/ml) at a frequency of 1.0 x 10(-9). Ciprofloxacin MICs for these first-step mutants ranged from 4 to 8 micrograms/ml, whereas trovafloxacin MICs were 0.25 to 0.5 microgram/ml. Amplification of the quinolone resistance-determining region of the grlA (parC; topoisomerase IV) and gyrA (DNA gyrase) genes of the parents and mutants revealed that changes of the serine at position 80 (Ser80) to Phe or Tyr (Staphylococcus aureus coordinates) in GrlA were associated with resistance to ciprofloxacin. Second-step mutants of these isolates were selected by plating the isolates on medium containing ciprofloxacin at 32 micrograms/ml. Mutants for which ciprofloxacin MICs were 32 to 256 micrograms/ml and trovafloxacin MICs were 4 to 16 micrograms/ml were obtained at a frequency of 1.0 x 10(-9). Second-step mutants also had a change in GyrA corresponding to a substitution in Ser84 to Tyr or Phe or in Glu88 to Lys. Trovafloxacin protected from infection mice whose lungs were inoculated with lethal doses of either the parent strain or the first-step mutant. These results indicate that resistance to fluoroquinolones in S. pneumoniae occurs in vitro at a low frequency, involving sequential mutations in topoisomerase IV and DNA gyrase. Trovafloxacin MICs for wild-type and first-step mutants are within clinically achievable levels in the blood and lungs of humans.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Fabíola Fernandes Galvão Rodrigues ◽  
José Galberto Martins Costa ◽  
Fábio Fernandes Galvao Rodrigues ◽  
Adriana Rolim Campos

Plectranthusis one of the most representative genera of Lamiaceae family. In this study, the essential oils fromPlectranthus amboinicus,Plectranthus ornatus, andPlectranthus barbatuswere investigated for their chemical composition and antimicrobial and modulatory activities. The major components found were carvacrol (54.4%—P. amboinicus) and eugenol (22.9%—P. ornatuse 25.1%—P. barbatus).In vitroantimicrobial activity was conducted againstEscherichia coli,Proteus vulgaris,Bacillus cereus,Pseudomonas aeruginosa,Staphylococcus aureus, andStaphylococcus aureus(multiresistant) using microdilution method. The results of bioassay showed that all strains were sensitive to the oils, exceptP. aeruginosathat was resistant toP. amboinicusandP. ornatus. A synergistic effect of all essential oils combined with the aminoglycosides was demonstrated. These results show thatP. amboinicus,P. ornatus, andP. barbatusinhibit the growth of pathogenic microorganism, and besides this they present antibiotic modifying activity, providing a new perspective against the problem of bacterial resistance to antibiotics.


2019 ◽  
Vol 17 (3) ◽  
pp. 140-148 ◽  
Author(s):  
A. Ouelhadj ◽  
L. Ait Salem ◽  
D. Djenane

Ce travail vise l’étude de l’activité antibactérienne de l’huile essentielle (HE) de Pelargoniumx asperum et de la bactériocine, la nisine seul et en combinaison vis-à-vis de six bactéries dont quatre sont multirésistantes d’origine clinique. L’activité antibactérienne in vitro a été évaluée par la méthode de diffusion sur gélose. La concentration minimale inhibitrice (CMI) est aussi déterminée pour HE. Les résultats ont révélé une activité antibactérienne significative exercée par HE visà-vis de Staphylococcus aureus (ATCC 43300), Staphylococcus aureus et Escherichia coli avec des diamètres d’inhibition de 36,00 ; 22,50 et 40,00 mm, respectivement. Cependant, l’HE de Pelargonium asperum a montré une activité antibactérienne supérieure par rapport à la nisine. Les valeurs des CMI rapportées dans cette étude sont comprises entre 1,98–3,96 μl/ml. Les combinaisons réalisées entre HE et la nisine ont montré un effet additif vis-à-vis de Escherichia coli (ATCC 25922) avec (50 % HE Pelargonium asperum + 50 % nisine). Par contre, nous avons enregistré une synergie vis-à-vis de Klebsiella pneumoniae avec (75 % HE Pelargonium asperum + 25 % nisine) et contre Pseudomonas aeruginosa avec les trois combinaisons testées. Les résultats obtenus permettent de dire que l’HE de Pelargonium asperum possède une activité antibactérienne ainsi que sa combinaison avec la nisine pourrait représenter une bonne alternative pour la lutte contre l’antibiorésistance.


2020 ◽  
Vol 2 (2) ◽  
pp. 61-68
Author(s):  
Agnina Listya Anggraini ◽  
Ratih Dewi Dwiyanti ◽  
Anny Thuraidah

Infection is a disease caused by the presence of pathogenic microbes, including Staphylococcus aureus and Escherichia coli. Garlic (Allium sativum L.) has chemical contents such as allicin, alkaloids, flavonoids, saponins, tannins, and steroids, which can function as an antibacterial against Staphylococcus aureus and Escherichia coli. This study aims to determine the antibacterial properties of garlic extract powder against Staphylococcus aureus and Escherichia coli. This research is the initial stage of the development of herbal medicines to treat Staphylococcus aureus and Escherichia coli infections. The antibacterial activity test was carried out by the liquid dilution method. The concentrations used were 30 mg/mL, 40 mg/mL, 50 mg/mL, 60 mg/mL and 70 mg/mL. The results showed that the Minimum Inhibitory Concentration (MIC) against Staphylococcus aureus and Escherichia coli was 40 mg/mL and 50 mg / mL. Minimum Bactericidal Concentration (MBC) results for Staphylococcus aureus and Escherichia coli are 50 mg/mL and 70 mg/mL. Based on the Simple Linear Regression test, the R2 value of Staphylococcus aureus and Escherichia coli is 0.545 and 0.785, so it can be concluded that there is an effect of garlic extract powder on the growth of Staphylococcus aureus and Escherichia coli by 54.5% and 78.5%. Garlic (Allium sativum L.) extract powder has potential as herbal medicine against bacterial infections but requires further research to determine its effect in vivo.


Sign in / Sign up

Export Citation Format

Share Document