scholarly journals Development and Preclinical Evaluation of New Inhaled Lipoglycopeptides for the Treatment of Persistent Pulmonary MRSA Infections

Author(s):  
Adam J. Plaunt ◽  
Sasha J. Rose ◽  
Jeong Yeon Kang ◽  
Kuan-Ju Chen ◽  
Daniel LaSala ◽  
...  

Chronic pulmonary MRSA disease in cystic fibrosis (CF) has a high probably of recurrence following treatment with standard-of-care antibiotics and represents an area of unmet need associated with reduced life expectancy. We developed a lipoglycopeptide therapy customized for pulmonary delivery that not only demonstrates potent activity against planktonic MRSA but also against protected colonies of MRSA both in biofilms and within cells, the latter of which have been linked to clinical antibiotic failure. A library of next-generation potent lipoglycopeptides were synthesized with an emphasis on attaining superior pharmacokinetics (PK) and pharmacodynamics to similar compounds of their class. Our strategy focused on hydrophobic modification of vancomycin where ester and amide functionality were included with carbonyl configuration and alkyl length as key variables. Candidates representative of each carbonyl attachment chemistry demonstrated potent activity in vitro with several compounds being 30-60 times more potent than vancomycin. Several compounds were advanced into in vivo nose-only inhalation PK evaluations in rats where RV94, a potent lipoglycopeptide that utilizes an inverted amide linker to attach a 10-carbon chain to vancomycin, demonstrated the most favorable lung residence time after inhalation. Further in vitro evaluation of RV94 showed superior activity to vancomycin against an expanded panel of gram-positive organisms, cellular accumulation and efficacy against intracellular MRSA, and MRSA biofilm killing. Moreover, in vivo efficacy of inhaled nebulized RV94 in a 48-h acute model of pulmonary MRSA (USA300) infection in neutropenic rats demonstrated statistically significant antibacterial activity that was superior to inhaled vancomycin.

2020 ◽  
Vol 2 (Supplement_2) ◽  
pp. ii7-ii7
Author(s):  
Agata Kieliszek ◽  
Chitra Venugopal ◽  
Blessing Bassey-Archibong ◽  
Nikoo Aghaei ◽  
Fred Lam ◽  
...  

Abstract BACKGROUND The incidence of brain metastases (BM) is tenfold higher than primary brain tumors. BM commonly originate from primary lung, breast, and melanoma tumors with a 90% mortality rate within one year of diagnosis. Current standard of care for BM includes surgical resection with concurrent chemoradiation, but does not extend median survival past 16 months, posing a large unmet need to identify novel therapies against BM. METHODS From a large in-house biobank of patient-derived BM cell lines, the Singh Lab has generated murine orthotopic patient-derived xenograft (PDX) models of lung, breast, and melanoma BM that recapitulate the stages of BM progression as seen in human patients. Using these three PDX models, we identified a population of “pre-metastatic” brain metastasis-initiating cells (BMICs) that are newly arrived in the brain but have yet to form detectable tumors. Pre-metastatic BMICs are not detectable in human patients but are important therapeutic targets with the potential to prevent BM in at-risk patients. RESULTS RNA sequencing of pre-metastatic BMICs from all three PDX primary tumor models with subsequent Connectivity Map analysis identified novel compounds that have the potential of killing all three types of BMICs. In particular, we identified two compounds that have selective killing of BMICs in vitro from all three primary tumor cohorts while sparing non-cancerous cells. We further characterized their ability to inhibit the self-renewal and proliferative properties of BMICs. Ongoing in vivo work will investigate the compounds’ preclinical utilities in preventing BM. CONCLUSION Identification of novel small molecules that target BMICs could prevent the formation of BM completely and dramatically improve the prognosis of at-risk cancer patients.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii196-ii196
Author(s):  
Agata Kieliszek ◽  
Chitra Venugopal ◽  
Blessing Bassey-Archibong ◽  
Fred Lam ◽  
Sheila Singh ◽  
...  

Abstract BACKGROUND The incidence of brain metastases (BM) is tenfold higher than primary brain tumors. BM commonly originate from primary lung, breast, and melanoma tumors with a 90% mortality rate within one year of diagnosis. Current standard of care for BM includes surgical resection with concurrent chemoradiation, but does not extend median survival past 16 months, posing a large unmet need to identify novel therapies against BM. METHODS From a large in-house biobank of patient-derived BM cell lines, the Singh Lab has generated murine orthotopic patient-derived xenograft (PDX) models of lung, breast, and melanoma BM that recapitulate the stages of BM progression as seen in humans. Using these three PDX models, we identified a population of “pre-metastatic” brain metastasis-initiating cells (BMICs) that are newly arrived in the brain but have yet to form detectable tumors. Pre-metastatic BMICs are not detectable in human patients but are important therapeutic targets with the potential to prevent BM in at-risk patients. RESULTS RNA sequencing of pre-metastatic BMICs from all three PDX primary tumor models with subsequent Connectivity Map analysis identified novel compounds that have the potential of killing all three types of BMICs. In particular, we identified two compounds that have selective killing of BMICs in vitro from all three primary tumor cohorts while sparing non-cancerous cells. We further characterized their ability to inhibit the self-renewal and proliferative properties of BMICs. Ongoing in vivo work will investigate the compounds’ preclinical utilities in preventing BM. CONCLUSION Identification of novel small molecules that target BMICs could prevent the formation of BM completely and dramatically improve the prognosis of at-risk cancer patients.


2019 ◽  
Vol 25 (28) ◽  
pp. 3020-3027 ◽  
Author(s):  
Mir W. Sekandarzad ◽  
Chris Doornebal ◽  
Markus W. Hollmann

: Opioids remain the standard of care in the provision of analgesia in the patient undergoing cancer surgery preoperatively. : The effects of opioids on tumor growth and metastasis have been discussed for many years. In recent years their use as part of the perioperative pain management bundle in the patients undergoing cancer surgery has been thought to promote cancer recurrence and metastasis. : This narrative review highlights earlier and more recent in vitro, in vivo and human retrospective studies that yield conflicting results as to the immune-modulatory effects of morphine on tumor biology. The article examines and explains the discrepancies with regards to the seemingly opposite results of morphine in the tumor milieu. The results of both, earlier studies that demonstrated procarcinogenic effects versus the data of more recent refined rodent studies that yielded neutral or even anti-carcinogenic effects are presented here. : Until the results of prospective randomized controlled trials are available to clarify this important question, it is currently not warranted to support opiophobia and opioids continue to constitute a pivotal role in the pain management of cancer patients.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii98-ii98
Author(s):  
Anne Marie Barrette ◽  
Alexandros Bouras ◽  
German Nudelman ◽  
Zarmeen Mussa ◽  
Elena Zaslavsky ◽  
...  

Abstract Glioblastoma (GBM) remains an incurable disease, in large part due to its malignant infiltrative spread, and current clinical therapy fails to target the invasive nature of tumor cells in disease progression and recurrence. Here, we use the YAP-TEAD inhibitor Verteporfin to target a convergence point for regulating tumor invasion/metastasis and establish the robust anti-invasive therapeutic efficacy of this FDA-approved drug and its survival benefit across several preclinical glioma models. Using patient-derived GBM cells and orthotopic xenograft models (PDX), we show that Verteporfin treatment disrupts YAP/TAZ-TEAD activity and processes related to cell adhesion, migration and epithelial-mesenchymal transition. In-vitro, Verteporfin impairs tumor migration, invasion and motility dynamics. In-vivo, intraperitoneal administration of Verteporfin in mice with orthotopic PDX tumors shows consistent drug accumulation within the brain and decreased infiltrative tumor burden, across three independent experiments. Interestingly, PDX tumors with impaired invasion after Verteporfin treatment downregulate CDH2 and ITGB1 adhesion protein levels within the tumor microenvironment. Finally, Verteporfin treatment confers survival benefit in two independent PDX models: as monotherapy in de-novo GBM and in combination with standard-of-care chemoradiation in recurrent GBM. These findings indicate potential therapeutic value of this FDA-approved drug if repurposed for GBM patients.


2010 ◽  
Vol 19 (4) ◽  
pp. 399-408 ◽  
Author(s):  
Sina Y. Rabbany ◽  
Joseph Pastore ◽  
Masaya Yamamoto ◽  
Tim Miller ◽  
Shahin Rafii ◽  
...  

Proper wound diagnosis and management is an increasingly important clinical challenge and is a large and growing unmet need. Pressure ulcers, hard-to-heal wounds, and problematic surgical incisions are emerging at increasing frequencies. At present, the wound-healing industry is experiencing a paradigm shift towards innovative treatments that exploit nanotechnology, biomaterials, and biologics. Our study utilized an alginate hydrogel patch to deliver stromal cell-derived factor-1 (SDF-1), a naturally occurring chemokine that is rapidly overexpressed in response to tissue injury, to assess the potential effects SDF-1 therapy on wound closure rates and scar formation. Alginate patches were loaded with either purified recombinant human SDF-1 protein or plasmid expressing SDF-1 and the kinetics of SDF-1 release were measured both in vitro and in vivo in mice. Our studies demonstrate that although SDF-1 plasmid- and protein-loaded patches were able to release therapeutic product over hours to days, SDF-1 protein was released faster (in vivo Kd 0.55 days) than SDF-1 plasmid (in vivo Kd 3.67 days). We hypothesized that chronic SDF-1 delivery would be more effective in accelerating the rate of dermal wound closure in Yorkshire pigs with acute surgical wounds, a model that closely mimics human wound healing. Wounds treated with SDF-1 protein ( n = 10) and plasmid ( n = 6) loaded patches healed faster than sham ( n = 4) or control ( n = 4). At day 9, SDF-1-treated wounds significantly accelerated wound closure (55.0 ± 14.3% healed) compared to nontreated controls (8.2 ± 6.0%, p < 0.05). Furthermore, 38% of SDF-1-treated wounds were fully healed at day 9 (vs. none in controls) with very little evidence of scarring. These data suggest that patch-mediated SDF-1 delivery may ultimately provide a novel therapy for accelerating healing and reducing scarring in clinical wounds.


2020 ◽  
Author(s):  
Kui Wu ◽  
Nathan Yee ◽  
Sangeetha Srinivasan ◽  
Amir Mahmoodi ◽  
Michael Zakharian ◽  
...  

<div> <div> <div> <p>A desired goal of targeted cancer treatments is to achieve high tumor specificity with minimal side effects. Despite recent advances, this remains difficult to achieve in practice as most approaches rely on biomarkers or physiological differences between malignant and healthy tissue, and thus benefit only a subset of patients in need of treatment. To address this unmet need, we introduced a Click Activated Protodrugs Against Cancer (CAPAC) platform that enables targeted activation of drugs at a specific site in the body, i.e., a tumor. In contrast to antibodies (mAbs, ADCs) and other targeted approaches, the mechanism of action is based on in vivo click chemistry, and is thus independent of tumor biomarker expression or factors such as enzymatic activity, pH, or oxygen levels. The platform consists of a tetrazine-modified sodium hyaluronate-based biopolymer injected at a tumor site, followed by one or more doses of a trans-cyclooctene (TCO)- modified cytotoxic protodrug with attenuated activity administered systemically. The protodrug is captured locally by the biopolymer through an inverse electron-demand Diels-Alder reaction between tetrazine and TCO, followed by conversion to the active drug directly at the tumor site, thereby overcoming the systemic limitations of conventional chemotherapy or the need for specific biomarkers of traditional targeted therapy. Here, TCO-modified protodrugs of four prominent cytotoxics (doxorubicin, paclitaxel, etoposide and gemcitabine) are used, highlighting the modularity of the CAPAC platform. In vitro evaluation of cytotoxicity, solubility, stability and activation rendered the protodrug of doxorubicin, SQP33, as the most promising candidate for in vivo studies. Studies in rodents show that a single injection of the tetrazine-modified biopolymer, SQL70, efficiently captures SQP33 protodrug doses given at 10.8-times the maximum tolerated dose of conventional doxorubicin with greatly reduced systemic toxicity. </p> </div> </div> </div>


2018 ◽  
Vol 115 (11) ◽  
pp. 2818-2823 ◽  
Author(s):  
Wei Tang ◽  
Zhengyan Guo ◽  
Zhenju Cao ◽  
Min Wang ◽  
Pengwei Li ◽  
...  

Seven-carbon-chain–containing sugars exist in several groups of important bacterial natural products. Septacidin represents a group of l-heptopyranoses containing nucleoside antibiotics with antitumor, antifungal, and pain-relief activities. Hygromycin B, an aminoglycoside anthelmintic agent used in swine and poultry farming, represents a group of d-heptopyranoses–containing antibiotics. To date, very little is known about the biosynthesis of these compounds. Here we sequenced the genome of the septacidin producer and identified the septacidin gene cluster by heterologous expression. After determining the boundaries of the septacidin gene cluster, we studied septacidin biosynthesis by in vivo and in vitro experiments and discovered that SepB, SepL, and SepC can convert d-sedoheptulose-7-phosphate (S-7-P) to ADP-l-glycero-β-d-manno-heptose, exemplifying the involvement of ADP-sugar in microbial natural product biosynthesis. Interestingly, septacidin, a secondary metabolite from a gram-positive bacterium, shares the same ADP-heptose biosynthesis pathway with the gram-negative bacterium LPS. In addition, two acyltransferase-encoding genes sepD and sepH, were proposed to be involved in septacidin side-chain formation according to the intermediates accumulated in their mutants. In hygromycin B biosynthesis, an isomerase HygP can recognize S-7-P and convert it to ADP-d-glycero-β-d-altro-heptose together with GmhA and HldE, two enzymes from the Escherichia coli LPS heptose biosynthetic pathway, suggesting that the d-heptopyranose moiety of hygromycin B is also derived from S-7-P. Unlike the other S-7-P isomerases, HygP catalyzes consecutive isomerizations and controls the stereochemistry of both C2 and C3 positions.


2021 ◽  
Author(s):  
Camille Douillet ◽  
Marc Nicodeme ◽  
Loïc Hermant ◽  
Vanessa Bergeron ◽  
Fabien Guillemot ◽  
...  

Abstract Fibroblasts and myofibroblasts play a central role in skin homeostasis through dermal organization and maintenance. Nonetheless, the dynamic interactions between (myo)fibroblasts and the extracellular matrix (ECM) remain poorly exploited in skin repair strategies. Indeed, there is still an unmet need for soft tissue models allowing to study the spatial-temporal remodeling properties of (myo)fibroblasts. In vivo, wound healing studies in animals are limited by species specificity. In vitro, most models rely on collagen gels reorganized by randomly distributed fibroblasts. But biofabrication technologies have significantly evolved over the past ten years. High-resolution bioprinting now allows to investigate various cellular micropatterns and the emergent tissue organizations over time. In order to harness the full dynamic properties of cells and active biomaterials, it is essential to consider “time” as the 4th dimension in soft tissue design. Following this 4D bioprinting approach, we aimed to develop a novel model that could replicate fibroblast dynamic remodeling in vitro. For this purpose, (myo)fibroblasts were patterned on collagen gels with laser-assisted bioprinting (LAB) to study the generated matrix deformations and reorganizations. First, distinct populations, mainly composed of fibroblasts or myofibroblasts, were established in vitro to account for the variety of fibroblastic remodeling properties. Then, LAB was used to organize both populations on collagen gels in even isotropic patterns with high resolution, high density and high viability. With maturation, bioprinted patterns of fibroblasts and myofibroblasts reorganized into dispersed or aggregated cells, respectively. Stress-release contraction assays revealed that these phenotype-specific pattern maturations were associated with distinct lattice tension states. The two populations were then patterned in anisotropic rows in order to direct the cell-generated deformations and to orient global matrix remodeling. Only maturation of anisotropic fibroblast patterns, but not myofibroblasts, resulted in collagen anisotropic reorganizations both at tissue-scale, with lattice contraction, and at microscale, with embedded microbead displacements. Following a 4D bioprinting approach, LAB patterning enabled to elicit and orient the dynamic matrix remodeling mechanisms of distinct fibroblastic populations and organizations on collagen. For future studies, this method provides a new versatile tool to investigate in vitro dermal organizations and properties, processes of remodeling in healing, and new treatment opportunities.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi192-vi192
Author(s):  
Ajay Sharma ◽  
Yanlai Lai ◽  
Bridget Kennis ◽  
Sreepradha Sridharan ◽  
Tara Dobson ◽  
...  

Abstract Diffuse Intrinsic Pontine Glioma (DIPG) is an incurable pediatric brain tumor that occur in the pons and brainstem and have a peak onset of age between 6–9 years of age. Radiation is currently used as standard of care. Chemotherapy has shown no improvements in survival. Here, we report our study of ONC201, a first-in-class anticancer small molecule developed by Oncoceutics, Inc., against DIPG cells in vitro and in mouse orthotopic models. ONC201 was discovered in a screen as a p53-independent inducer of the pro-apoptotic cytokine TRAIL. It is known to directly and selectively inhibit dopamine receptor D2 (DRD2), a member of the G protein-coupled receptor (GPCR) family. MTT assays to determine the sensitivity of DIPG cells to ONC201 revealed a slight but not significantly different response to the drug based on their expression of wild type (WT) histone H3 or histone H3K27M mutant protein, with IC50 values in the range of 3-8mM. Decrease in cell growth was associated with a decrease in AKT and ERK phosphorylation and an increase in TRAIL expression. In vivo, intraperitoneal administration of ONC201 to mice bearing pontine DIPG tumors, once every week for 6 weeks, caused a significant reduction in tumor burden relative to untreated controls as measured by bioluminescence assays. However, stoppage of treatment resulted in tumor regrowth within 6 weeks, suggesting the existence of a population that were not eliminated by the current schedule of ONC210. Single cell proteomic analyses-based comparison of untreated and ONC201-treated DIPG cells showed an expected global reduction in pro-survival signals such as phosphorylated AKT and ERK. Molecules with potential to predict susceptibility of cells to ONC201 were also revealed, and are being confirmed by transcriptome analyses. Results of a chemical screen to target ONC201-refractory tumor cells will be discussed.


Sign in / Sign up

Export Citation Format

Share Document