scholarly journals Role of VraSR in Antibiotic Resistance and Antibiotic-Induced Stress Response in Staphylococcus aureus

2006 ◽  
Vol 50 (10) ◽  
pp. 3424-3434 ◽  
Author(s):  
S. Gardete ◽  
S. W. Wu ◽  
S. Gill ◽  
A. Tomasz

ABSTRACT Exposure of Staphylococcus aureus to cell wall inhibitors induces massive overexpression of a number of genes, provided that the VraSR two-component sensory regulatory system is intact. Inactivation of vraS blocks this transcriptional response and also causes a drastic reduction in the levels of resistance to beta-lactam antibiotics and vancomycin. We used an experimental system in which the essential cell wall synthesis gene of S. aureus, pbpB, was put under the control of an isopropyl-β-d-thiogalactopyranoside-inducible promoter in order to induce reversible perturbations in cell wall synthesis without the use of any cell wall-active inhibitor. Changes in the level of transcription of pbpB were rapidly followed by parallel changes in the vraSR signal, and the abundance of the pbpB transcript was precisely mirrored by the abundance of the transcripts of vraSR and some additional genes that belong to the VraSR regulon. Beta-lactam resistance in S. aureus appears to involve a complex stress response in which VraSR performs the critical role of a sentinel system capable of sensing the perturbation of cell wall synthesis and allowing mobilization of genes that are essential for the generation of a highly resistant phenotype. One of the sites in cell wall synthesis “sensed” by the VraSR system appears to be a step catalyzed by PBP 2.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Pan ◽  
Jing Guan ◽  
Yujie Li ◽  
Baolin Sun

The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes severe pandemics primarily consisting of skin and soft tissue infections. However, the underlying pathomechanisms of the bacterium are yet to fully understood. The present study identifies LcpB protein, which belongs to the LytR-A-Psr (LCP) family, is crucial for cell wall synthesis and virulence in S. aureus. The findings revealed that LcpB is a pyrophosphatase responsible for wall teichoic acid synthesis. The results also showed that LcpB regulates enzyme activity through specific key arginine sites in its LCP domain. Furthermore, knockout of lcpB in the CA-MRSA isolate ST59 resulted in enhanced hemolytic activity, enlarged of abscesses, and increased leukocyte infiltration. Meanwhile, we also found that LcpB regulates virulence in agr-independent manner and the key sites for pyrophosphatase of LcpB play critical roles in regulating the virulence. In addition, the results showed that the role of LcpB was different between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). This study therefore highlights the dual role of LcpB in cell wall synthesis and regulation of virulence. These insights on the underlying molecular mechanisms can thus guide the development of novel anti-infective strategies.


Microbiology ◽  
2014 ◽  
Vol 160 (8) ◽  
pp. 1737-1748 ◽  
Author(s):  
Ronan K. Carroll ◽  
Frances E. Rivera ◽  
Courtney K. Cavaco ◽  
Grant M. Johnson ◽  
David Martin ◽  
...  

Staphylococcus aureus is a versatile pathogen of humans and a continued public health concern due to the rise and spread of multidrug-resistant strains. As part of an ongoing investigation into the pathogenic mechanisms of this organism we previously demonstrated that an intracellular N-terminal processing protease is required for S. aureus virulence. Following on from this, here we examine the role of CtpA, the lone C-terminal processing protease of S. aureus. CtpA, a member of the S41 family, is a serine protease whose homologues in Gram-negative bacteria have been implicated in a range of biological functions, including pathogenesis. We demonstrate that S. aureus CtpA is localized to the bacterial cell wall and expression of the ctpA gene is maximal upon exposure to conditions encountered during infection. Disruption of the ctpA gene leads to decreased heat tolerance and increased sensitivity when exposed to components of the host immune system. Finally we demonstrate that the ctpA − mutant strain is attenuated for virulence in a murine model of infection. Our results represent the first characterization of a C-terminal processing protease in a pathogenic Gram-positive bacterium and show that it plays a critical role during infection.


2014 ◽  
Vol 58 (11) ◽  
pp. 6685-6695 ◽  
Author(s):  
Dhritiman Samanta ◽  
Mohamed O. Elasri

ABSTRACTVancomycin-intermediateStaphylococcus aureus(VISA) strains present an increasingly difficult problem in terms of public health. However, the molecular mechanism for this resistance is not yet understood. In this study, we define the role of themsaABCRoperon in vancomycin resistance in three clinical VISA strains, i.e., Mu50, HIP6297, and LIM2. Deletion of themsaABCRoperon resulted in significant decreases in the vancomycin MIC (from 6.25 to 1.56 μg/ml) and significant reductions of cell wall thickness in strains Mu50 and HIP6297. Growth of the mutants in medium containing vancomycin at concentrations greater than 2 μg/ml resulted in decreases in the growth rate, compared with the wild-type strains. Mutation of themsaABCRoperon also reduced the binding capacity for vancomycin. We conclude that themsaABCRoperon contributes to resistance to vancomycin and cell wall synthesis inS. aureus.


2006 ◽  
Vol 188 (7) ◽  
pp. 2543-2553 ◽  
Author(s):  
R. G. Sobral ◽  
A. M. Ludovice ◽  
H. de Lencastre ◽  
A. Tomasz

ABSTRACT The Staphylococcus aureus murF gene was placed under the control of a promoter inducible by IPTG (isopropyl-β-d-thiogalactopyranoside). It was demonstrated that murF is an essential gene; it is cotranscribed with ddlA and growth rate, level of beta-lactam antibiotic resistance, and rates of transcription of the mecA and pbpB genes paralleled the rates of transcription of murF. At suboptimal concentrations of the inducer, a UDP-linked muramyl tripeptide accumulated in the cytoplasm in parallel with the decline in the amounts of the normal pentapeptide cell wall precursor. The abnormal tripeptide component incorporated into the cell wall as a monomeric muropeptide, accompanied by a decrease in the oligomerization degree of the peptidoglycan. However, incorporation of the tripeptide into the cell wall was limited to a relatively low threshold value. Further reduction of the amounts of pentapeptide cell wall precursor caused a gradual decrease in the cellular amounts of peptidoglycan, the production of a thinner peripheral cell wall, aberrant septae, and an overall increase in the diameter of the cells. The observations suggest that the role of murF exceeds its primary function in peptidoglycan biosynthesis and may also be involved in the control of cell division.


BIOspektrum ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 390-393
Author(s):  
F.-Nora Vögtle

AbstractThe majority of mitochondrial proteins are encoded in the nuclear genome, so that the nearly entire proteome is assembled by post-translational preprotein import from the cytosol. Proteomic imbalances are sensed and induce cellular stress response pathways to restore proteostasis. Here, the mitochondrial presequence protease MPP serves as example to illustrate the critical role of mitochondrial protein biogenesis and proteostasis on cellular integrity.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Zhen-Zhen Liu ◽  
Yong-Jun Yang ◽  
Feng-Hua Zhou ◽  
Ke Ma ◽  
Xiao-Qi Lin ◽  
...  

AbstractGasdermin D (GSDMD), a member of the gasdermin protein family, is a caspase substrate, and its cleavage is required for pyroptosis and IL-1β secretion. To date, the role and regulatory mechanism of GSDMD during cutaneous microbial infection remain unclear. Here, we showed that GSDMD protected against Staphylococcus aureus skin infection by suppressing Cxcl1–Cxcr2 signalling. GSDMD deficiency resulted in larger abscesses, more bacterial colonization, exacerbated skin damage, and increased inflammatory cell infiltration. Although GSDMD deficiency resulted in defective IL-1β production, the critical role of IL-1β was counteracted by the fact that Caspase-1/11 deficiency also resulted in less IL-1β production but did not aggravate disease severity during S. aureus skin infection. Interestingly, GSDMD-deficient mice had increased Cxcl1 secretion accompanied by increased recruitment of neutrophils, whereas Caspase-1/11-deficient mice presented similar levels of Cxcl1 and neutrophils as wild-type mice. Moreover, the absence of GSDMD promoted Cxcl1 secretion in bone marrow-derived macrophages induced by live, dead, or different strains of S. aureus. Corresponding to higher transcription and secretion of Cxcl1, enhanced NF-κB activation was shown in vitro and in vivo in the absence of GSDMD. Importantly, inhibiting the Cxcl1–Cxcr2 axis with a Cxcr2 inhibitor or anti-Cxcl1 blocking antibody rescued host defence defects in the GSDMD-deficient mice. Hence, these results revealed an important role of GSDMD in suppressing the Cxcl1–Cxcr2 axis to facilitate pathogen control and prevent tissue damage during cutaneous S. aureus infection.


1971 ◽  
Vol 9 (3) ◽  
pp. 581-601
Author(s):  
D. G. ROBINSON ◽  
R. D. PRESTON

Naked swarmers of both Cladophora rupestris and Chaetomorpha melagonium have been examined by the freeze-etching technique. The swarmers of Cladophora, collected just after settling, reveal several layers of granules external to the plasmalemma and internal to the so-called ‘fibrous-layer’. Chaetomorpha swarmers collected just before settling show extrusion of vesicles through the plasmalemma. The structures associated with the membranes are discussed in relation to known features of these swarmers already observed by sectioning. The role of granules in the synthesis of cell wall microfibrils is strengthened though the spatial arrangement of the granules seen in this investigation does not completely fulfil the ‘ordered granule’ hypothesis. Description of, and comments on, features related to cell wall synthesis, particularly the Golgi and vacuolar systems, are given.


Sign in / Sign up

Export Citation Format

Share Document