scholarly journals Cytotoxicity of Voriconazole on Cultured Human Corneal Endothelial Cells

2011 ◽  
Vol 55 (10) ◽  
pp. 4519-4523 ◽  
Author(s):  
Sang Beom Han ◽  
Young Joo Shin ◽  
Joon Young Hyon ◽  
Won Ryang Wee

ABSTRACTThe purpose of the present study was to evaluate the toxicity of voriconazole on cultured human corneal endothelial cells (HCECs). HCECs were cultured and exposed to various concentrations of voriconazole (5.0 to 1,000 μg/ml). Cell viability was measured using a Cell Counting Kit-8 (CCK-8) and live/dead viability/cytotoxicity assays. Cell damage was assessed using phase-contrast microscopy after 24 h of exposure to voriconazole. To analyze the effect of voriconazole on the intercellular barrier, immunolocalization of zonula occludens 1 (ZO1) was performed. A flow cytometric assay was performed to evaluate the apoptotic and necrotic effects of voriconazole on HCECs. Cytotoxicity tests demonstrated the dose-dependent toxic effect of voriconazole on HCECs. Voriconazole concentrations of ≥100 μg/ml led to a significant reduction in cell viability. The morphological characteristics of HCECs also changed in a dose-dependent manner. Increasing concentrations of voriconazole resulted in fading staining for ZO1. Higher concentrations of voriconazole resulted in an increased number of propidium iodide (PI)-positive cells, indicating activation of the proapoptotic pathway. In conclusion, voriconazole may have a dose-dependent toxic effect on cultured HCECs. The results of this study suggest that although voriconazole concentrations of up to 50 μg/ml do not decrease cell viability, intracameral voriconazole concentrations of ≥100 μg/ml may increase the risk of corneal endothelial damage.

2016 ◽  
Vol 38 (3) ◽  
pp. 871-882 ◽  
Author(s):  
Hui Ren ◽  
Jianjun Mu ◽  
Jingjing Ma ◽  
Jie Gong ◽  
Jing Li ◽  
...  

Background/Aims: Endothelial cells are crucial in vascular homeostasis. Dysfunction of endothelial cells is involved in the development of cardiovascular diseases (CVD). High plasma homocysteine (Hcy) correlates with CVD while selenium supplementation counteracts development of CVD. However, the underlying mechanism remained unclear. Here, we investigated the effects of selenium on homocysteine-induced endothelial dysfunction. Methods: An animal model of Hcy-induced endothelial dysfunction was established by intragastric administration of L-methionine. Plasma NO and von Willebrand factor (vWF) were quantified using NO assay and ELISA kit respectively. Relaxation was measured in thoracic aortic ring assays. Cell viability and migration were detected by Cell Counting Kit-8 and Bio-Coat cell migration chambers respectively. Cellular apoptosis was determined by Annexin V-FITC apoptosis kit. Results: Selenium prevented homocysteine-induced endothelial injury and impairment of endothelium-dependent relaxation. Selenium reversed the impaired viability and migration of endothelial cells induced by homocysteine in a dose-dependent manner. Selenium inhibited the apoptosis of endothelial cells induced by homocysteine, through downregulating of Caspase-3 activity and expression of Caspase-3 and Bax, and by stimulating Bcl-2 expression. Selenium reversed the homocysteine-induced reduction of NO release, and increased the expression and phosphoylation of endothelial nitric oxide synthetase (eNOS) in a dose-dependent manner. Moreover, selenium enhanced AKT phosphorylation, and selenium-induced phosphorylation and expression of eNOS were inhibited by AKT inhibition. NO production, cell viability and migration rescued by selenium were inhibited, while cell apoptosis was reversed by AKT inhibition. Conclusion: Selenium protected against homocysteine-induced dysfunction and apoptosis of endothelial cells through AKT pathway. The observations may provide novel therapeutic opportunities in the treatment of CVD.


2014 ◽  
Vol 38 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Yi-Han Li ◽  
Qian Wen ◽  
Ting-Jun Fan ◽  
Yuan Ge ◽  
Miao-Miao Yu ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1422-1422
Author(s):  
Meritxell Nomdedeu ◽  
Marta Pratcorona ◽  
Marina Díaz-Beyá ◽  
Xavier Calvo ◽  
Mari Carmen Lara-Castillo ◽  
...  

Abstract Background The simultaneous administration of G-CSF and chemotherapy as a priming strategy has resulted in a clinical benefit in determined subsets of patients diagnosed with acute myeloid leukemia (AML) (Löwenberg et al, NEJM 2003; Pabst T, et al, Blood 2012). However, the mechanism responsible for this anti-leukemic effect is not fully characterized. We hypothesize that the clinical benefit may occur at least partially by the effect of G-CSF on leukemic stem cells (LSC). Objective The main goal of this project was to determine the effect of G-CSF on primary AML samples in vitro, especially on LSCs. Methods and patients Peripheral blood mononuclear cells (PBMC) from 10 AML patients were treated with G-CSF at increasing doses, alone or in co-culture with HS-5 stroma cells. Cell viability (7-AAD -eBioscience- cell death exclusion and volumetric cell counting) and surface phenotype was determined by flow cytometry (FACSVerse, BD) 72 hours after treatment. Data were analyzed using the FlowJo (Trastar) software. For clonogenicity assays, AML primary samples were treated for 18 hours with G-CSF at increasing concentrations and cultured in H4034 Optimum MethoCult (StemCell Technologies) for 14 days. Colonies were counted based on cellularity and morphology criteria. Results G-CSF treatment showed no effect on cell viability of the bulk leukemic population or on the CD34 + immature subpopulation. A dose-dependent increase in CXCR4 surface expression was observed, reaching a 1.4-fold of change at the highest concentration of G-CSF (100 μg/mL). In contrast, treatment of leukemia cells with G-CSF in the presence of stroma cells reduced the overall cell viability. Thus, a 32% decrease of cell viability was measured at the highest concentration used (p = 0.0006), while no significant changes in the frequency of each leukemic subpopulations were observed. Clonogenic capacity was significantly reduced in a dose-dependent manner upon treatment with G-CSF, achieving a 41% reduction at the highest G-CSF concentration (100 μg/mL). Conclusions G-CSF reduces the viability of leukemic cells when these cells are in co-culture with the HS-5 stroma cell line, suggesting that the presence of stroma cells is required for the cytotoxical effect of G-CSF on the blast population. Interestingly, G-CSF treatment decreased the clonogenic capacity of AML samples, therefore suggesting that G-CSF exerts its effect at least partially on LSCs. Our findings support the design of studies to explore new strategies of chemotherapy priming in AML patients. Disclosures: No relevant conflicts of interest to declare.


2022 ◽  
Author(s):  
Qizhi Wang ◽  
Min Liu ◽  
Yu Liu ◽  
Zhen Zhang ◽  
Zhengping Bai

Abstract Objective: To investigate the effects of cigarette smoke extract (CSE) and lipopolysaccharide (LPS) on the activity and pyroptosis of pulmonary microvascular endothelial cells (PMVECs). Methods: PMVECs were cultured without treatment or with CSE (1%-25%), LPS, or CSE+LPS. Cell viability was detected using the CCK8 method. Apoptosis was evaluated by flow cytometry. Cell morphology was evaluated using optical microscopy. The content of IL-1β and IL-18 was measured by ELISA. Results: CSE decreased cell viability in a dose-dependent manner. The cells in the CSE+LPS group showed the most obvious cytomorphological changes and the highest pyroptosis rate under the microscope. Flow cytometry showed that the CSE and LPS groups showed higher apoptosis rates than the blank group; the apoptotic rate in the CSE+LPS group was even higher (P<0.01). Compared with the bkank group, the levels of IL-18 and IL-1β in the cell supernatant of the CSE, LPS, and CSE+LPS groups increased significantly, with significant differences (P<0.01). There were no differences between the CSE and LPS groups (P>0.05). Compared with the CSE and LPS groups, the CSE+LPS group had higher IL-18 and IL-1β (P<0.01). Conclusion: The effect of CSE on cell viability is dose-dependent. CSE+LPS can induce cell pyroptosis and increase the levels of inflammatory cytokines in PMVECs. These observations demonstrated that pyroptosis caused by CSE and LPS might play an important role in pulmonary vascular remodeling.


1992 ◽  
Vol 70 (9) ◽  
pp. 803-809 ◽  
Author(s):  
Tai-Wing Wu ◽  
Jun Wu ◽  
Doug Carey ◽  
Ling-Hua Zeng

Rat ventricular myocytes have been isolated and cultured by two separate procedures. Using phase-contrast and electron microscopies, we illustrate that (a) definitive cell damage is produced when myocytes are exposed to xanthine oxidase – hypoxanthine and (b) purpurogallin between 0.25 and 1.0 mM prolongs survival of both myocyte preparations in a dose-dependent manner. The cytoprotection produced by 1 mM purpurogallin exceeds that given by 2 mM each of ascorbate, Trolox, and mannitol, or 24 200 IU superoxide dismutase/L and (or) 92 000 IU catalase/L. Furthermore, we noted, for the first time, that purpurogallin markedly protects rat aortic endothelial cells, a key target of free radical generation and attack. In contrast, Trolox has a negligible effect here. Mechanistically, we showed that purpurogallin inhibits urate formation by xanthine oxidase more potently than allopurinol. Also, the compound diminishes formation of superoxide-reduced cytochrome c. Therefore, purpurogallin is a potent protector of ventricular myocytes and aortic endothelial cells, both of which are important cells in the cardiovascular system.Key words: purpurogallin, endothelial cells, myocytes.


Author(s):  
Li Chen ◽  
Ziyue Wang ◽  
Wei Xu ◽  
Qirong Dong

Abstract Purposes to study the effect of titanium particles on MLO-Y4 and the effects of osteocytes alterations on osteoblasts. Methods cultured MLO-Y4 osteocytes were exposed to different concentrations of titanium (Ti) particles, cell viability was measured using the Cell Counting Kit-8 (CCK-8) assay, apoptosis of MLO-Y4 cells was evaluated by flow cytometry, Real-time PCR quantification of mRNA expression of SOST, at the same time with Western Blot detection sclerosteosis protein expression levels.MC3T3-E1 cells culture with MLO-Y4 cells exposed to different concentrations of titanium (Ti) particles in vitro, in order to detection of osteoblast osteogenetic activity. Results Our results showed that Ti particles inhibited cell viability of MLO-Y4 osteocytes in a dose-dependent manner. Incubation with Ti particles caused apoptosis of MLO-Y4cells.Treatment with Ti particles significantly increased expression of the osteocytic marker SOST/sclerostin. Furthermore, treatment of MLO-Y4 cells with Ti particles produced a dose-dependent decrease in ALP activity and decreased mineralization of MC3T3-E1 cells through direct cell-cell contact. Conclusions Titanium particles damage osteocytes and inhibit osteoblast differentiation.


2001 ◽  
Vol 280 (3) ◽  
pp. C491-C499 ◽  
Author(s):  
Kunyan Kuang ◽  
Yansui Li ◽  
Quan Wen ◽  
Zheng Wang ◽  
Jun Li ◽  
...  

Although Na+-K+-2Cl− cotransport has been demonstrated in cultured bovine corneal endothelial cells, its presence and role in the native tissue have been disputed. Using RT-PCR we have now identified a partial clone of the cotransporter protein in freshly dissected as well as in cultured corneal endothelial and epithelial cells. The deduced amino acid sequence of this protein segment is 99% identical to that of the bovine isoform (bNKCC1). [3H]bumetanide binding shows that the cotransporter sites are located in the basolateral membrane region at a density of 1.6 pmol/mg of protein, close to that in lung epithelium. Immunocytochemistry confirms the basolateral location of the cotransporter. We calculate the turnover rate of the cotransporter to be 83 s−1. Transendothelial fluid transport, determined from deepithelialized rabbit corneal thickness measurements, is partially inhibited (30%) by bumetanide in a dose-dependent manner. Our results demonstrate that Na+-K+-2Cl− cotransporters are present in the basolateral domain of freshly dissected bovine corneal endothelial cells and contribute to fluid transport across corneal endothelial preparations.


Cornea ◽  
2019 ◽  
Vol 38 (9) ◽  
pp. 1175-1181 ◽  
Author(s):  
Mohit Parekh ◽  
Vito Romano ◽  
Alessandro Ruzza ◽  
Stephen B. Kaye ◽  
Diego Ponzin ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryota Ko ◽  
Masahiko Hayashi ◽  
Miho Tanaka ◽  
Tomoaki Okuda ◽  
Chiharu Nishita-Hara ◽  
...  

AbstractWe evaluated the effects of ambient particulate matter (PM) on the corneal epithelium using a reconstructed human corneal epithelium (HCE) model. We collected two PM size fractions [aerodynamic diameter smaller than 2.4 µm: PM0.3–2.4 and larger than 2.4 µm: PM>2.4] and exposed these tissues to PM concentrations of 1, 10, and 100 µg/mL for 24 h. After exposure, cell viability and interleukin (IL) IL-6 and IL-8 levels were determined, and haematoxylin and eosin and immunofluorescence staining of the zonula occludens-1 (ZO-1) were performed on tissue sections. In addition, the effects of a certified reference material of urban aerosols (UA; 100 µg/mL) were also examined as a reference. The viability of cells exposed to 100 μg/mL UA and PM>2.4 decreased to 76.2% ± 7.4 and 75.4% ± 16.1, respectively, whereas PM0.3–2.4 exposure had a limited effect on cell viability. These particles did not increase IL-6 and IL-8 levels significantly even though cell viability was decreased in 100 μg/mL UA and PM>2.4. ZO-1 expression was reduced in a dose-dependent manner in all groups. Reconstructed HCE could be used as an in vitro model to study the effects of environmental PM exposure on ocular surface cell viability and inflammation.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2178
Author(s):  
Fabio Morandi ◽  
Veronica Bensa ◽  
Enzo Calarco ◽  
Fabio Pastorino ◽  
Patrizia Perri ◽  
...  

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


Sign in / Sign up

Export Citation Format

Share Document