scholarly journals Optimized Nile Red Efflux Assay of AcrAB-TolC Multidrug Efflux System Shows Competition between Substrates

2010 ◽  
Vol 54 (9) ◽  
pp. 3770-3775 ◽  
Author(s):  
Jürgen A. Bohnert ◽  
Brian Karamian ◽  
Hiroshi Nikaido

ABSTRACT AcrAB-TolC is the major constitutively expressed efflux pump system that provides resistance to a variety of antimicrobial agents and dyes in Escherichia coli. However, no systematically optimized real-time dye efflux assay has been published for the measurement of its activity and for detection of possible competition between substrates. Here, we report on the development of such an assay using a lipophilic dye, Nile Red. Energy-depleted cells were loaded with the dye in the presence of low (10 μM or less) concentrations of the proton conductor carbonyl cyanide m-chlorophenylhydrazone (CCCP). The CCCP was then removed, and efflux was triggered by energization with glucose. Various known efflux pump inhibitors and antimicrobials were checked for the ability to slow down Nile Red efflux, presumably through competition. Besides the known inhibitors Phe-Arg-β-naphthylamide and 1-naphthyl-methylpiperazine, several tetracyclic compounds (doxorubicin, minocycline, chlortetracycline, doxycycline, and tetracycline) and tetraphenylphosphonium chloride were found to interfere with dye efflux. This inhibition could not be explained by the depletion of proton motive force. None of the other tested antimicrobials, including macrolides, fluoroquinolones, and β-lactams, had any impact on Nile Red efflux, even at concentrations of up to 1 mM.

2000 ◽  
Vol 182 (15) ◽  
pp. 4264-4267 ◽  
Author(s):  
Helen I. Zgurskaya ◽  
Hiroshi Nikaido

ABSTRACT In Escherichia coli, the intrinsic levels of resistance to multiple antimicrobial agents are produced through expression of the three-component multidrug efflux system AcrAB-TolC. AcrB is a proton-motive-force-dependent transporter located in the inner membrane, and AcrA and TolC are accessory proteins located in the periplasm and the outer membrane, respectively. In this study, these three proteins were expressed separately, and the interactions between them were analyzed by chemical cross-linking in intact cells. We show that AcrA protein forms oligomers, most probably trimers. In this oligomeric form, AcrA interacts specifically with AcrB transporter independently of substrate and TolC.


2004 ◽  
Vol 186 (1) ◽  
pp. 262-265 ◽  
Author(s):  
Gui-Xin He ◽  
Teruo Kuroda ◽  
Takehiko Mima ◽  
Yuji Morita ◽  
Tohru Mizushima ◽  
...  

ABSTRACT We cloned the gene PA1361 (we designated the gene pmpM), which seemed to encode a multidrug efflux pump belonging to the MATE family, of Pseudomonas aeruginosa by the PCR method using the drug-hypersensitive Escherichia coli KAM32 strain as a host. Cells of E. coli possessing the pmpM gene showed elevated resistance to several antimicrobial agents. We observed energy-dependent efflux of ethidium from cells possessing the pmpM gene. We found that PmpM is an H+-drug antiporter, and this finding is the first reported case of an H+-coupled efflux pump in the MATE family. Disruption and reintroduction of the pmpM gene in P. aeruginosa revealed that PmpM is functional and that benzalkonium chloride, fluoroquinolones, ethidium bromide, acriflavine, and tetraphenylphosphonium chloride are substrates for PmpM in this microorganism.


2013 ◽  
Vol 7 (1) ◽  
pp. 83-86 ◽  
Author(s):  
Jürgen A Bohnert ◽  
Sabine Schuster ◽  
Winfried V Kern

Efflux pump inhibitors (EPIs) are attractive compounds to reverse multidrug-resistance in clinically relevant bacterial pathogens. In this study we tested the ability of the neuroleptic drug pimozide to inhibit the Escherichia coli AcrAB-TolC efflux pump, whose overproduction confers resistance to various antimicrobial agents. A real-time Nile red efflux assay in the AcrAB – overproducing strain 3-AG100 revealed that pimozide was capable of full inhibition of this pump at a concentration of 100 µM, which is far below its intrinsic MIC (>1mM). However, MIC assay demonstrated very little effect of pimozide with regard to reduction in MICs of various antimicrobial compounds. Only oxacillin MICs were reduced twofold in the presence of pimozide at 100 and 200 µM. Since pimozide did considerably enhance accumulation of ethidium bromide in a fluorescence assay, ethidium bromide MIC assays in the presence and absence of this putative EPI were performed. They revealed that pimozide was able to reduce the MICs of ethidium bromide by 4-fold. In line with previous reports we suggest that the capability of EPIs to restore the susceptibility to antimicrobial agents can be highly substrate-specific due to different substrate binding sites.


2013 ◽  
Vol 7 (1) ◽  
pp. 34-52 ◽  
Author(s):  
Christina Kourtesi ◽  
Anthony R Ball ◽  
Ying-Ying Huang ◽  
Sanjay M Jachak ◽  
D Mariano A Vera ◽  
...  

Conventional antimicrobials are increasingly ineffective due to the emergence of multidrug-resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered exploration for novel and unconventional approaches to controlling microbial infections. Multidrug efflux systems (MES) have been a profound obstacle in the successful deployment of antimicrobials. The discovery of small molecule efflux system blockers has been an active and rapidly expanding research discipline. A major theme in this platform involves efflux pump inhibitors (EPIs) from natural sources. The discovery methodologies and the available number of natural EPI-chemotypes are increasing. Advances in our understanding of microbial physiology have shed light on a series of pathways and phenotypes where the role of efflux systems is pivotal. Complementing existing antimicrobial discovery platforms such as photodynamic therapy (PDT) with efflux inhibition is a subject under investigation. This core information is a stepping stone in the challenge of highlighting an effective drug development path for EPIs since the puzzle of clinical implementation remains unsolved. This review summarizes advances in the path of EPI discovery, discusses potential avenues of EPI implementation and development, and underlines the need for highly informative and comprehensive translational approaches.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Meinan Lyu ◽  
Mitchell A. Moseng ◽  
Jennifer L. Reimche ◽  
Concerta L. Holley ◽  
Vijaya Dhulipala ◽  
...  

ABSTRACT Neisseria gonorrhoeae is an obligate human pathogen and causative agent of the sexually transmitted infection (STI) gonorrhea. The most predominant and clinically important multidrug efflux system in N. gonorrhoeae is the multiple transferrable resistance (Mtr) pump, which mediates resistance to a number of different classes of structurally diverse antimicrobial agents, including clinically used antibiotics (e.g., β-lactams and macrolides), dyes, detergents and host-derived antimicrobials (e.g., cationic antimicrobial peptides and bile salts). Recently, it has been found that gonococci bearing mosaic-like sequences within the mtrD gene can result in amino acid changes that increase the MtrD multidrug efflux pump activity, probably by influencing antimicrobial recognition and/or extrusion to elevate the level of antibiotic resistance. Here, we report drug-bound solution structures of the MtrD multidrug efflux pump carrying a mosaic-like sequence using single-particle cryo-electron microscopy, with the antibiotics bound deeply inside the periplasmic domain of the pump. Through this structural approach coupled with genetic studies, we identify critical amino acids that are important for drug resistance and propose a mechanism for proton translocation. IMPORTANCE Neisseria gonorrhoeae has become a highly antimicrobial-resistant Gram-negative pathogen. Multidrug efflux is a major mechanism that N. gonorrhoeae uses to counteract the action of multiple classes of antibiotics. It appears that gonococci bearing mosaic-like sequences within the gene mtrD, encoding the most predominant and clinically important transporter of any gonococcal multidrug efflux pump, significantly elevate drug resistance and enhance transport function. Here, we report cryo-electron microscopy (EM) structures of N. gonorrhoeae MtrD carrying a mosaic-like sequence that allow us to understand the mechanism of drug recognition. Our work will ultimately inform structure-guided drug design for inhibiting these critical multidrug efflux pumps.


2005 ◽  
Vol 49 (11) ◽  
pp. 4775-4777 ◽  
Author(s):  
Maria R. Pasca ◽  
Paola Guglierame ◽  
Edda De Rossi ◽  
Francesca Zara ◽  
Giovanna Riccardi

ABSTRACT The Mycobacterium tuberculosis mmpL7 gene, encoding a hypothetical resistance nodulation division transporter, confers a high resistance level to isoniazid when overexpressed in Mycobacterium smegmatis. The resistance level decreased in the presence of the efflux pump inhibitors reserpine and CCCP (carbonyl cyanide m-chlorophenylhydrazone). Energy-dependent efflux of isoniazid from M. smegmatis cells expressing the mmpL7 gene was observed.


2003 ◽  
Vol 47 (12) ◽  
pp. 3733-3738 ◽  
Author(s):  
Eun-Woo Lee ◽  
M. Nazmul Huda ◽  
Teruo Kuroda ◽  
Tohru Mizushima ◽  
Tomofusa Tsuchiya

ABSTRACT A DNA fragment responsible for resistance to antimicrobial agents was cloned from the chromosomal DNA of Enterococcus faecalis ATCC 29212 by using drug-hypersensitive mutant Escherichia coli KAM32 as a host cell. Cells of E. coli KAM32 harboring a recombinant plasmid (pAEF82) carrying the DNA fragment became resistant to many structurally unrelated antimicrobial agents, such as norfloxacin, ciprofloxacin, doxycycline, acriflavine, 4′,6-diamidino-2-phenylindole, tetraphenylphosphonium chloride, daunorubicin, and doxorubicin. Since the sequence of the whole genome of E. faecalis is known, we sequenced several portions of the DNA insert in plasmid pAEF82 and identified two open reading frames within the insert. We designated the genes efrA and efrB. A search of the deduced amino acid sequences of EfrA and EfrB revealed that they are similar to each other and that they belong to the ATP-binding cassette (ABC) family of multidrug efflux transporters. Transformed E. coli KAM32 cells harboring efrAB showed energy-dependent efflux of acriflavine. The efflux activity was inhibited by reserpine, verapamil, and sodium-o-vanadate, known inhibitors of ABC efflux pumps.


2007 ◽  
Vol 190 (2) ◽  
pp. 648-654 ◽  
Author(s):  
Taira Matsuo ◽  
Jing Chen ◽  
Yusuke Minato ◽  
Wakano Ogawa ◽  
Tohru Mizushima ◽  
...  

ABSTRACT We cloned genes, designated smdAB, that encode a multidrug efflux pump from the chromosomal DNA of clinically isolated Serratia marcescens NUSM8906. For cells of the drug-hypersensitive strain Escherichia coli KAM32 harboring a recombinant plasmid carrying smdAB, structurally unrelated antimicrobial agents such as norfloxacin, tetracycline, 4′,6-diamidino-2-phenylindole (DAPI), and Hoechst 33342 showed elevated MICs. The deduced amino acid sequences of both SmdA and SmdB exhibited similarities to the sequences of ATP-binding cassette (ABC)-type multidrug efflux pumps. The efflux of DAPI and Hoechst 33342 from E. coli cells expressing SmdAB was observed, and the efflux activities were inhibited by sodium o-vanadate, which is a well-known ATPase inhibitor. The introduction of smdA or smdB alone into E. coli KAM32 did not elevate the MIC of DAPI; thus, both SmdA and SmdB were required for function. These results indicate that SmdAB is probably a heterodimeric multidrug efflux pump of the ABC family in S. marcescens.


2008 ◽  
Vol 191 (1) ◽  
pp. 287-297 ◽  
Author(s):  
Jason P. Folster ◽  
Paul J. T. Johnson ◽  
Lydgia Jackson ◽  
Vijaya Dhulipali ◽  
David W. Dyer ◽  
...  

ABSTRACT The MtrR transcriptional-regulatory protein is known to repress transcription of the mtrCDE operon, which encodes a multidrug efflux pump possessed by Neisseria gonorrhoeae that is important in the ability of gonococci to resist certain hydrophobic antibiotics, detergents, dyes, and host-derived antimicrobials. In order to determine whether MtrR can exert regulatory action on other gonococcal genes, we performed a whole-genome microarray analysis using total RNA extracted from actively growing broth cultures of isogenic MtrR-positive and MtrR-negative gonococci. We determined that, at a minimum, 69 genes are directly or indirectly subject to MtrR control, with 47 being MtrR repressed and 22 being MtrR activated. rpoH, which encodes the general stress response sigma factor RpoH (sigma 32), was found by DNA-binding studies to be directly repressed by MtrR, as it was found to bind to a DNA sequence upstream of rpoH that included sites within the rpoH promoter. MtrR also repressed the expression of certain RpoH-regulated genes, but this regulation was likely indirect and a reflection of MtrR control of rpoH expression. Inducible expression of MtrR was found to repress rpoH expression and to increase gonococcal susceptibility to hydrogen peroxide (H2O2) and an antibiotic (erythromycin) recognized by the MtrC-MtrD-MtrE efflux pump system. We propose that, apart from its ability to control the expression of the mtrCDE-encoded efflux pump operon and, as a consequence, levels of gonococcal resistance to host antimicrobials (e.g., antimicrobial peptides) recognized by the efflux pump, the ability of MtrR to regulate the expression levels of rpoH and RpoH-regulated genes also modulates levels of gonococcal susceptibility to H2O2.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1502
Author(s):  
Abolfazl Dashtbani-Roozbehani ◽  
Melissa H. Brown

The increasing emergence of antimicrobial resistance in staphylococcal bacteria is a major health threat worldwide due to significant morbidity and mortality resulting from their associated hospital- or community-acquired infections. Dramatic decrease in the discovery of new antibiotics from the pharmaceutical industry coupled with increased use of sanitisers and disinfectants due to the ongoing COVID-19 pandemic can further aggravate the problem of antimicrobial resistance. Staphylococci utilise multiple mechanisms to circumvent the effects of antimicrobials. One of these resistance mechanisms is the export of antimicrobial agents through the activity of membrane-embedded multidrug efflux pump proteins. The use of efflux pump inhibitors in combination with currently approved antimicrobials is a promising strategy to potentiate their clinical efficacy against resistant strains of staphylococci, and simultaneously reduce the selection of resistant mutants. This review presents an overview of the current knowledge of staphylococcal efflux pumps, discusses their clinical impact, and summarises compounds found in the last decade from plant and synthetic origin that have the potential to be used as adjuvants to antibiotic therapy against multidrug resistant staphylococci. Critically, future high-resolution structures of staphylococcal efflux pumps could aid in design and development of safer, more target-specific and highly potent efflux pump inhibitors to progress into clinical use.


Sign in / Sign up

Export Citation Format

Share Document