scholarly journals Subinhibitory Concentrations of Trimethoprim and Sulfamethoxazole Prevent Biofilm Formation by Acinetobacter baumannii through Inhibition of Csu Pilus Expression

2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Ki Hwan Moon ◽  
Brent S. Weber ◽  
Mario F. Feldman

ABSTRACT Acinetobacter baumannii is emerging as a multidrug-resistant nosocomial pathogen of increasing threat to human health worldwide. Pili are important bacterial virulence factors, playing a role in attachment to host cells and biofilm formation. The Csu pilus, which is assembled via the chaperone-usher secretion system, has been studied in A. baumannii ATCC 19606. Here we show that, in opposition to previous reports, the common laboratory strain ATCC 17978 produces Csu pili. We found that, although ATCC 17978 was resistant to sulfamethoxazole (Smx) and trimethoprim (Tmp), subinhibitory concentrations of these antibiotics abolished the expression of Csu and consequently produced a dramatic reduction in biofilm formation by ATCC 17978. Smx and Tmp acted synergistically to inhibit the enzymatic systems involved in the bacterial synthesis of tetrahydrofolate (THF), which is required for the synthesis of nucleotides. The effects of these antibiotics were partially relieved by exogenous THF addition, indicating that Smx and Tmp turn off Csu assembly by inducing folate stress. We propose that, for Acinetobacter, nanomolar concentrations of Smx and Tmp represent a “danger signal.” In response to this signal, Csu expression is repressed, allowing biofilm dispersal and escape from potentially inhibitory concentrations of antibiotics. The roles of antibiotics as signaling molecules are being increasingly acknowledged, with clear implications for both the treatment of bacterial diseases and the understanding of complex microbial interactions in the environment.

2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Ye Jin ◽  
Yinjuan Guo ◽  
Qing Zhan ◽  
Yongpeng Shang ◽  
Di Qu ◽  
...  

ABSTRACT Previous studies have shown that the administration of antibiotics at subinhibitory concentrations stimulates biofilm formation by the majority of multidrug-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated the effect of subinhibitory concentrations of mupirocin on biofilm formation by the community-associated (CA) mupirocin-sensitive MRSA strain USA300 and the highly mupirocin-resistant clinical S. aureus SA01 to SA05 isolates. We found that mupirocin increased the ability of MRSA cells to attach to surfaces and form biofilms. Confocal laser scanning microscopy (CLSM) demonstrated that mupirocin treatment promoted thicker biofilm formation, which also correlated with the production of extracellular DNA (eDNA). Furthermore, quantitative real-time PCR (RT-qPCR) results revealed that this effect was largely due to the involvement of holin-like and antiholin-like proteins (encoded by the cidA gene), which are responsible for modulating cell death and lysis during biofilm development. We found that cidA expression levels significantly increased by 6.05- to 35.52-fold (P < 0.01) after mupirocin administration. We generated a cidA-deficient mutant of the USA300 S. aureus strain. Exposure of the ΔcidA mutant to mupirocin did not result in thicker biofilm formation than that in the parent strain. We therefore hypothesize that the mupirocin-induced stimulation of S. aureus biofilm formation may involve the upregulation of cidA.


2013 ◽  
Vol 79 (21) ◽  
pp. 6535-6543 ◽  
Author(s):  
H. M. Sharon Goh ◽  
Scott A. Beatson ◽  
Makrina Totsika ◽  
Danilo G. Moriel ◽  
Minh-Duy Phan ◽  
...  

ABSTRACTAcinetobacter baumanniiis a multidrug-resistant pathogen associated with hospital outbreaks of infection across the globe, particularly in the intensive care unit. The ability ofA. baumanniito survive in the hospital environment for long periods is linked to antibiotic resistance and its capacity to form biofilms. Here we studied the prevalence, expression, and function of theA. baumanniibiofilm-associated protein (Bap) in 24 carbapenem-resistantA. baumanniiST92 strains isolated from a single institution over a 10-year period. Thebapgene was highly prevalent, with 22/24 strains being positive forbapby PCR. Partial sequencing ofbapwas performed on the index case strain MS1968 and revealed it to be a large and highly repetitive gene approximately 16 kb in size. Phylogenetic analysis employing a 1,948-amino-acid region corresponding to the C terminus of Bap showed that BapMS1968clusters with Bap sequences from clonal complex 2 (CC2) strains ACICU, TCDC-AB0715, and 1656-2 and is distinct from Bap in CC1 strains. By using overlapping PCR, thebapMS1968gene was cloned, and its expression in a recombinantEscherichia colistrain resulted in increased biofilm formation. A Bap-specific antibody was generated, and Western blot analysis showed that the majority ofA. baumanniistrains expressed an ∼200-kDa Bap protein. Further analysis of three Bap-positiveA. baumanniistrains demonstrated that Bap is expressed at the cell surface and is associated with biofilm formation. Finally, biofilm formation by these Bap-positive strains could be inhibited by affinity-purified Bap antibodies, demonstrating the direct contribution of Bap to biofilm growth byA. baumanniiclinical isolates.


2015 ◽  
Vol 60 (3) ◽  
pp. 1370-1376 ◽  
Author(s):  
Ghulam Nasser Dhabaan ◽  
Sazaly AbuBakar ◽  
Gustavo Maia Cerqueira ◽  
Mohammed Al-Haroni ◽  
Sui Ping Pang ◽  
...  

Acinetobacter baumanniihas emerged as a notorious multidrug-resistant pathogen, and development of novel control measures is of the utmost importance. Understanding the factors that play a role in drug resistance may contribute to the identification of novel therapeutic targets. Pili are essential forA. baumanniiadherence to and biofilm formation on abiotic surfaces as well as virulence. In the present study, we found that biofilm formation was significantly induced in an imipenem-resistant (Impr) strain treated with a subinhibitory concentration of antibiotic compared to that in an untreated control and an imipenem-susceptible (Imps) isolate. Using microarray and quantitative PCR analyses, we observed that several genes responsible for the synthesis of type IV pili were significantly upregulated in the Imprbut not in the Impsisolate. Notably, this finding is corroborated by an increase in the motility of the Imprstrain. Our results suggest that the ability to overproduce colonization factors in response to imipenem treatment confers biological advantage toA. baumanniiand may contribute to clinical success.


2013 ◽  
Vol 58 (3) ◽  
pp. 1622-1629 ◽  
Author(s):  
Ramamourthy Gopal ◽  
Young Gwon Kim ◽  
Jun Ho Lee ◽  
Seog Ki Lee ◽  
Jeong Don Chae ◽  
...  

ABSTRACTThe increasing prevalence of drug-resistant pathogens highlights the need to identify novel antibiotics. Here we investigated the efficacies of four new antimicrobial peptides (AMPs) for potential drug development. The antibacterial activities, synergistic effects, and antibiofilm properties of the four chimeric AMPs were tested againstAcinetobacter baumannii, an emerging Gram-negative, nosocomial, drug-resistant pathogen. NineteenA. baumanniistrains resistant to ampicillin, cefotaxime, ciprofloxacin, tobramycin, and erythromycin were isolated at a hospital from patients with cholelithiasis. All four peptides exhibited significant antibacterial effects (MIC = 3.12 to 12.5 μM) against all 19 strains, whereas five commercial antibiotics showed little or no activity against the same pathogens. An exception was polymyxin, which was effective against all of the strains tested. Each of the peptides showed synergy against one or more strains when administered in combination with cefotaxime, ciprofloxacin, or erythromycin. The peptides also exhibited an ability to prevent biofilm formation, which was not seen with cefotaxime, ciprofloxacin, or erythromycin, though polymyxin also inhibited biofilm formation. Indeed, when administered in combination with ciprofloxacin, the AMP HPMA exerted a potent synergistic effect againstA. baumanniibiofilm formation. Collectively, our findings indicate that the AMPs tested have no cytotoxicity but possess potent antibacterial and antibiofilm activities and may act synergistically with commercial antibiotics.


2015 ◽  
Vol 60 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Suvarna Krishnamoorthy ◽  
Bhavikkumar P. Shah ◽  
Hiu Ham Lee ◽  
Luis R. Martinez

ABSTRACTAcinetobacter baumanniiis a Gram-negative bacterium that causes nosocomial infections worldwide. This microbe's propensity to form biofilms allows it to persist and to survive on clinical abiotic surfaces for long periods. In fact,A. baumanniibiofilm formation and its multidrug-resistant nature severely compromise our capacity to care for patients in hospital environments. In contrast, microbicides such as cetrimide (CT) and chlorhexidine (CHX) play important roles in the prevention and treatment of infections. We assessed the efficacy of CT and CHX, either alone or in combination, in eradicatingA. baumanniibiofilms formed by clinical isolates, by using stainless steel washers to mimic hard abiotic surfaces found in hospital settings. We demonstrated that increasing amounts of each microbicide, alone or in combination, were able to damage and to reduce the viability ofA. baumanniibiofilms efficaciously. Interestingly, theadeBgene of the resistance-nodulation-cell division (RND) family is predominantly associated with acquired resistance to antimicrobials inA. baumannii. We showed that CT and CHX adversely modified the expression and function of the RND-type efflux pump AdeABC in biofilm-associatedA. baumanniicells. Furthermore, we established that these microbicides decreased the negative charges onA. baumanniicell membranes, causing dysregulation of the efflux pump and leading to cell death. Our findings suggest that CT and CHX, alone or in combination, can be used efficaciously for eradication ofA. baumanniifrom hospital surfaces, in order to reduce infections caused by this nosocomial agent.


2011 ◽  
Vol 193 (22) ◽  
pp. 6393-6394 ◽  
Author(s):  
Jin Yeol Park ◽  
Shukho Kim ◽  
Sung-Min Kim ◽  
Sun Ho Cha ◽  
Si-Kyu Lim ◽  
...  

Acinetobacter baumanniiis a Gram-negative bacterium causing nosocomial infections worldwide. To gain quick insight into the molecular basis of biofilm formation inA. baumannii, we determined the complete genome sequence ofA. baumanniistrain 1656-2, which forms sturdy biofilm and is resistant to multiple drugs.


2013 ◽  
Vol 58 (3) ◽  
pp. 1802-1805 ◽  
Author(s):  
Jeng Yeong Chow ◽  
Yuanyong Yang ◽  
Song Buck Tay ◽  
Kim Lee Chua ◽  
Wen Shan Yew

ABSTRACTAcinetobacter baumanniiis a major human pathogen associated with multidrug-resistant nosocomial infections; its virulence is attributed to quorum-sensing-mediated biofilm formation, and disruption of biofilm formation is an attractive antivirulence strategy. Here, we report the first successful demonstration of biofilm disruption in a clinical isolate ofA. baumanniiS1, using a quorum-quenching lactonase obtained by directed evolution; this engineered lactonase significantly reduced the biomass ofA. baumannii-associated biofilms, demonstrating the utility of this antivirulence strategy.


Microbiology ◽  
2020 ◽  
Vol 166 (8) ◽  
pp. 717-726
Author(s):  
Hye-Rim Kim ◽  
Da-Seul Shin ◽  
Hye-In Jang ◽  
Yong-Bin Eom

Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that affects patients with a compromised immune system and is becoming increasingly important as a hospital-derived infection. This pathogen is difficult to treat owing to its intrinsic multidrug resistance and ability to form antimicrobial-tolerant biofilms. In the present study, we aimed to assess the potential use of zerumbone as a novel anti-biofilm and/or anti-virulence agent against A. baumannii . The results showed that zerumbone at sub-inhibitory doses decreased biofilm formation and disrupted established A. baumannii biofilms. The zerumbone-induced decrease in biofilm formation was dose-dependent based on the results of microtitre plate biofilm assays and confocal laser scanning microscopy. In addition, our data validated the anti-virulence efficacy of zerumbone, wherein it significantly interfered with the motility of A. baumannii . To support these phenotypic results, transcriptional analysis revealed that zerumbone downregulated the expression of biofilm- and virulence-associated genes (adeA, adeB, adeC and bap) in A. baumannii . Overall, our findings suggested that zerumbone might be a promising bioactive agent for the treatment of biofilm- and virulence-related infections caused by multidrug-resistant A. baumannii .


2021 ◽  
Vol 9 (2) ◽  
pp. 354
Author(s):  
Nuria Crua Asensio ◽  
Javier Macho Rendón ◽  
Marc Torrent Burgas

The rise in the number of antibiotic-resistant bacteria has become a serious threat to health, making it important to identify, characterize and optimize new molecules to help us to overcome the infections they cause. It is well known that Acinetobacter baumannii has a significant capacity to evade the actions of antibacterial drugs, leading to its emergence as one of the bacteria responsible for hospital and community-acquired infections. Nonetheless, how this pathogen infects and survives inside the host cell is unclear. In this study, we analyze the time-resolved transcriptional profile changes observed in human epithelial HeLa cells after infection by A. baumannii, demonstrating how it survives in host cells and starts to replicate 4 h post infection. These findings were achieved by sequencing RNA to obtain a set of Differentially Expressed Genes (DEGs) to understand how bacteria alter the host cells’ environment for their own benefit. We also determine common features observed in this set of genes and identify the protein–protein networks that reveal highly-interacted proteins. The combination of these findings paves the way for the discovery of new antimicrobial candidates for the treatment of multidrug-resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document