scholarly journals Functional Role of Methylation of G518 of the 16S rRNA 530 Loop by GidB in Mycobacterium tuberculosis

2013 ◽  
Vol 57 (12) ◽  
pp. 6311-6318 ◽  
Author(s):  
Sharon Y. Wong ◽  
Babak Javid ◽  
Balasubrahmanyam Addepalli ◽  
Grzegorz Piszczek ◽  
Michael Brad Strader ◽  
...  

ABSTRACTPosttranscriptional modifications of bacterial rRNA serve a variety of purposes, from stabilizing ribosome structure to preserving its functional integrity. Here, we investigated the functional role of one rRNA modification in particular—the methylation of guanosine at position 518 (G518) of the 16S rRNA inMycobacterium tuberculosis. Based on previously reported evidence that G518 is located 5 Å; from proline 44 of ribosomal protein S12, which interacts directly with the mRNA wobble position of the codon:anticodon helix at the A site during translation, we speculated that methylation of G518 affects protein translation. We transformed reporter constructs designed to probe the effect of functional lesions at one of the three codon positions on translational fidelity into the wild-type strain, H37Rv, and into a ΔgidBmutant, which lacks the methyltransferase (GidB) that methylates G518. We show that mistranslation occurs less in the ΔgidBmutant only in the construct bearing a lesion in the wobble position compared to H37Rv. Thus, the methylation of G518 allows mistranslation to occur at some level in order for translation to proceed smoothly and efficiently. We also explored the role of methylation at G518 in altering the susceptibility ofM. tuberculosisto streptomycin (SM). Using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS), we confirmed that G518 is not methylated in the ΔgidBmutant. Furthermore, isothermal titration calorimetry experiments performed on 70S ribosomes purified from wild-type and ΔgidBmutant strains showed that methylation significantly enhances SM binding. These results provide a mechanistic explanation for the low-level, SM-resistant phenotype observed inM. tuberculosisstrains that contain agidBmutation.

2012 ◽  
Vol 56 (4) ◽  
pp. 1990-1996 ◽  
Author(s):  
Alix Pantel ◽  
Stéphanie Petrella ◽  
Nicolas Veziris ◽  
Florence Brossier ◽  
Sylvaine Bastian ◽  
...  

ABSTRACTFluoroquinolone (FQ) resistance is emerging inMycobacterium tuberculosis. The main mechanism of FQ resistance is amino acid substitution within the quinolone resistance-determining region (QRDR) of the GyrA subunit of DNA gyrase, the sole FQ target inM. tuberculosis. However, substitutions in GyrB whose implication in FQ resistance is unknown are increasingly being reported. The present study clarified the role of four GyrB substitutions identified inM. tuberculosisclinical strains, two located in the QRDR (D500A and N538T) and two outside the QRDR (T539P and E540V), in FQ resistance. We measured FQ MICs and also DNA gyrase inhibition by FQs in order to unequivocally clarify the role of these mutations in FQ resistance. Wild-type GyrA, wild-type GyrB, and mutant GyrB subunits produced from engineeredgyrBalleles by mutagenesis were overexpressed inEscherichia coli, purified to homogeneity, and used to reconstitute highly active gyrase complexes. MICs and DNA gyrase inhibition were determined for moxifloxacin, gatifloxacin, ofloxacin, levofloxacin, and enoxacin. All these substitutions are clearly implicated in FQ resistance, underlining the presence of a hot spot region housing most of the GyrB substitutions implicated in FQ resistance (residues NTE, 538 to 540). These findings help us to refine the definition of GyrB QRDR, which is extended to positions 500 to 540.


2012 ◽  
Vol 80 (9) ◽  
pp. 3132-3144 ◽  
Author(s):  
Stefano Casonato ◽  
Axel Cervantes Sánchez ◽  
Hirohito Haruki ◽  
Monica Rengifo González ◽  
Roberta Provvedi ◽  
...  

ABSTRACTThe proteins belonging to the WhiB superfamily are small global transcriptional regulators typical of actinomycetes. In this paper, we characterize the role of WhiB5, aMycobacterium tuberculosisprotein belonging to this superfamily. A null mutant was constructed inM. tuberculosisH37Rv and was shown to be attenuated during both progressive and chronic mouse infections. Mice infected with the mutant had smaller bacillary burdens in the lungs but a larger inflammatory response, suggesting a role of WhiB5 in immunomodulation. Most interestingly, thewhiB5mutant was not able to resume growth after reactivation from chronic infection, suggesting that WhiB5 controls the expression of genes involved in this process. The mutant was also more sensitive than the wild-type parental strain toS-nitrosoglutathione (GSNO) and was less metabolically active following prolonged starvation, underscoring the importance of GSNO and starvation in development and maintenance of chronic infection. DNA microarray analysis identified 58 genes whose expression is influenced by WhiB5, includingsigM, encoding an alternative sigma factor, and genes encoding the constituents of two type VII secretion systems, namely, ESX-2 and ESX-4.


2011 ◽  
Vol 55 (10) ◽  
pp. 4524-4529 ◽  
Author(s):  
Alix Pantel ◽  
Stéphanie Petrella ◽  
Stéphanie Matrat ◽  
Florence Brossier ◽  
Sylvaine Bastian ◽  
...  

ABSTRACTThe main mechanism of fluoroquinolone (FQ) resistance inMycobacterium tuberculosisis mutation in DNA gyrase (GyrA2GyrB2), especially ingyrA. However, the discovery of unknown mutations ingyrBwhose implication in FQ resistance is unclear has become more frequent. We investigated the impact on FQ susceptibility of eightgyrBmutations inM. tuberculosisclinical strains, three of which were previously identified in an FQ-resistant strain. We measured FQ MICs and also DNA gyrase inhibition by FQs in order to clarify the role of these mutations in FQ resistance. Wild-type GyrA, wild-type GyrB, and mutant GyrB subunits produced from engineeredgyrBalleles by mutagenesis were overexpressed inEscherichia coli, purified to homogeneity, and used to reconstitute highly active gyrase complexes. MICs and DNA gyrase inhibition were determined for moxifloxacin, gatifloxacin, ofloxacin, levofloxacin, and enoxacin. We demonstrated that the eight substitutions in GyrB (D473N, P478A, R485H, S486F, A506G, A547V, G551R, and G559A), recently identified in FQ-resistant clinical strains or encountered inM. tuberculosisstrains isolated in France, are not implicated in FQ resistance. These results underline that, as opposed to phenotypic FQ susceptibility testing, the DNA gyrase inhibition assay is the only way to prove the role of a DNA gyrase mutation in FQ resistance. Therefore, the use of FQ in the treatment of tuberculosis (TB) patients should not be ruled out only on the basis of the presence of mutations ingyrB.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Kiranmai Bhatt ◽  
Henrique Machado ◽  
Nuno S. Osório ◽  
Jeremy Sousa ◽  
Filipa Cardoso ◽  
...  

ABSTRACT Nonribosomal peptide synthases produce short peptides in a manner that is distinct from classical mRNA-dependent ribosome-mediated translation. The Mycobacterium tuberculosis genome harbors a nonribosomal peptide synthase gene, nrp, which is part of a gene cluster proposed to be involved in the biosynthesis of isonitrile lipopeptides. Orthologous clusters are found in other slow-growing pathogenic mycobacteria and actinomycetes. To probe the role of the nrp gene in infection, we generated an nrp deletion mutant in M. tuberculosis H37Rv and tested its virulence in immunocompetent (C57BL/6) mice. The nrp mutant strain displayed lower initial growth rates in the lungs and a defective dissemination to the spleens of infected mice. Mice infected with the mutant strain also survived for twice as long as those infected with wild-type M. tuberculosis and, remarkably, showed subdued pathology, despite similar bacterial loads at later stages of infection. The differences in the course of infection between wild-type and nrp mutant strains were accompanied by distinct dynamics of the immune response. Most strikingly, the nrp mutant was highly attenuated in immunodeficient (SCID-, recombination activating 2 [RAG2]-, and gamma interferon [IFN-γ]-deficient) mice, suggesting that macrophages control the nrp mutant more efficiently than they control the wild-type strain. However, in the presence of IFN-γ, both strains were equally controlled. We propose that the nrp gene and its associated cluster are drivers of virulence during the early stages of infection. IMPORTANCE Over 10 million people developed tuberculosis (TB) in 2016, and over 1.8 million individuals succumbed to the disease. These numbers make TB the ninth leading cause of death worldwide and the leading cause from a single infectious agent. Therefore, finding novel therapeutic targets in Mycobacterium tuberculosis, the pathogen that causes most cases of human TB, is critical. In this study, we reveal a novel virulence factor in M. tuberculosis, the nrp gene. The lack of nrp highly attenuates the course of M. tuberculosis infection in the mouse model, which is particularly relevant in immune-deficient hosts. This is very relevant as TB is particularly incident in immune-suppressed individuals, such as HIV patients.


2016 ◽  
Vol 60 (5) ◽  
pp. 3202-3206 ◽  
Author(s):  
Gaëlle Guiewi Makafe ◽  
Yuanyuan Cao ◽  
Yaoju Tan ◽  
Mugweru Julius ◽  
Zhiyong Liu ◽  
...  

ABSTRACTWe expressed the wild-typerplCand mutatedrplC(Cys154Arg) genes, respectively, inMycobacterium tuberculosisH37Ra and H37Rv in an attempt to delineate the role ofrplC(Cys154Arg) regarding oxazolidinone resistance. An increase of the MICs of linezolid (LZD) and sutezolid (PNU-100480, PNU) against the recombinant mycobacteria with overexpressedrplCmutation (Cys154Arg) was found, suggesting therplCgene is a determinant of bacillary susceptibilities to LZD and PNU.


2020 ◽  
Vol 65 (1) ◽  
pp. e01948-20
Author(s):  
Dalin Rifat ◽  
Si-Yang Li ◽  
Thomas Ioerger ◽  
Keshav Shah ◽  
Jean-Philippe Lanoix ◽  
...  

ABSTRACTThe nitroimidazole prodrugs delamanid and pretomanid comprise one of only two new antimicrobial classes approved to treat tuberculosis (TB) in 50 years. Prior in vitro studies suggest a relatively low barrier to nitroimidazole resistance in Mycobacterium tuberculosis, but clinical evidence is limited to date. We selected pretomanid-resistant M. tuberculosis mutants in two mouse models of TB using a range of pretomanid doses. The frequency of spontaneous resistance was approximately 10−5 CFU. Whole-genome sequencing of 161 resistant isolates from 47 mice revealed 99 unique mutations, of which 91% occurred in 1 of 5 genes previously associated with nitroimidazole activation and resistance, namely, fbiC (56%), fbiA (15%), ddn (12%), fgd (4%), and fbiB (4%). Nearly all mutations were unique to a single mouse and not previously identified. The remaining 9% of resistant mutants harbored mutations in Rv2983 (fbiD), a gene not previously associated with nitroimidazole resistance but recently shown to be a guanylyltransferase necessary for cofactor F420 synthesis. Most mutants exhibited high-level resistance to pretomanid and delamanid, although Rv2983 and fbiB mutants exhibited high-level pretomanid resistance but relatively small changes in delamanid susceptibility. Complementing an Rv2983 mutant with wild-type Rv2983 restored susceptibility to pretomanid and delamanid. By quantifying intracellular F420 and its precursor Fo in overexpressing and loss-of-function mutants, we provide further evidence that Rv2983 is necessary for F420 biosynthesis. Finally, Rv2983 mutants and other F420H2-deficient mutants displayed hypersusceptibility to some antibiotics and to concentrations of malachite green found in solid media used to isolate and propagate mycobacteria from clinical samples.


2015 ◽  
Vol 59 (11) ◽  
pp. 6873-6881 ◽  
Author(s):  
Kathryn Winglee ◽  
Shichun Lun ◽  
Marco Pieroni ◽  
Alan Kozikowski ◽  
William Bishai

ABSTRACTDrug resistance is a major problem inMycobacterium tuberculosiscontrol, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity againstM. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independentM. tuberculosismutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations inRv2887were common to all three MP-III-71-resistant mutants, and we confirmed the role ofRv2887as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified inEscherichia colito negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation ofRv2887abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations ofRv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance ofM. tuberculosisRv2887mutants may involve efflux pump upregulation and also drug methylation.


2011 ◽  
Vol 77 (20) ◽  
pp. 7227-7235 ◽  
Author(s):  
William W. Driscoll ◽  
John W. Pepper ◽  
Leland S. Pierson ◽  
Elizabeth A. Pierson

ABSTRACTBacteria rely on a range of extracellular metabolites to suppress competitors, gain access to resources, and exploit plant or animal hosts. The GacS/GacA two-component regulatory system positively controls the expression of many of these beneficial external products in pseudomonad bacteria. Natural populations often contain variants with defective Gac systems that do not produce most external products. These mutants benefit from a decreased metabolic load but do not appear to displace the wild type in nature. How could natural selection maintain the wild type in the presence of a mutant with enhanced growth? One hypothesis is that Gac mutants are “cheaters” that do not contribute to the public good, favored within groups but selected against between groups, as groups containing more mutants lose access to ecologically important external products. An alternative hypothesis is that Gac mutants have a mutualistic interaction with the wild type, so that each variant benefits by the presence of the other. In the biocontrol bacteriumPseudomonas chlororaphisstrain 30-84, Gac mutants do not produce phenazines, which suppress competitor growth and are critical for biofilm formation. Here, we test the predictions of these alternative hypotheses by quantifying interactions between the wild type and the phenazine- and biofilm-deficient Gac mutant within growing biofilms. We find evidence that the wild type and Gac mutants interact mutualistically in the biofilm context, whereas a phenazine-defective structural mutant does not. Our results suggest that the persistence of alternative Gac phenotypes may be due to the stabilizing role of local mutualistic interactions.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


2017 ◽  
Vol 117 (8) ◽  
pp. 1550-1566 ◽  
Author(s):  
Xiaoyan Wang ◽  
Haijun Bao

Purpose The purpose of this paper is to focus on the operation strategy of high-performance alliance portfolios by analyzing the effect of alliance portfolios on the performance of focal firms, using post-structuralism of social network theory and contingency theory. In detail, this paper refines alliance portfolios into three dimensions, and studies the moderating role of context on the relation between alliance portfolios and firm performance. Design/methodology/approach The empirical study was carried out with second-hand data gathered from Internal Revenue Service. In total, this paper gathered data from 506 focal firms in Zhejiang Province from 2001 to 2010 as the sample to test the hypotheses. Findings Based on the empirical results, the authors find the positive effect of relational dimension (weak alliance portfolios) and partner dimension (the diversity of partners) on performance. The effect of the former will become weaker with the increasing environmental dynamic, while the effect of the latter will become stronger. However, the structural dimension (alliance portfolios size) and relational dimension (new partners) have the negative effect on performance. And the negative effect will become stronger under high environmental dynamic. Moreover, the negative effect of non-local partners on performance becomes stronger when the environmental dynamic is high. Research limitations/implications The paper reveals that with the industry transformation caused by “internet +,” companies have been required go beyond traditional dyadic alliance management perspective. That is to say, individual alliance relationship should be seen as a part of a much broader picture of alliance portfolio. As such, the framework may help companies to manage their alliance portfolios by matching high-performance alliance portfolios to the external environment to produce a synergistic effect (Lea et al., 2006; Tritos et al., 2013; Keith et al., 2014) taking the characteristics of the configuration of alliance portfolios into consideration. Originality/value The paper presents a model that explains the effect of three dimensions of alliance portfolios on the performance of focal firms in different contexts through empirical study. This paper also integrates post-structuralism of social network theory and contingency theory to enable the understanding on the configuration of alliance portfolios.


Sign in / Sign up

Export Citation Format

Share Document