scholarly journals Molecular Basis for Different Levels oftet(M) Expression in Streptococcus pneumoniae Clinical Isolates

2012 ◽  
Vol 56 (10) ◽  
pp. 5040-5045 ◽  
Author(s):  
Patrick Grohs ◽  
Patrick Trieu-Cuot ◽  
Isabelle Podglajen ◽  
Sophie Grondin ◽  
Arnaud Firon ◽  
...  

ABSTRACTSeventy-four unrelated clinical isolates ofStreptococcus pneumoniaeharboring thetet(M) gene were studied. Seven strains with low tetracycline (Tc) MICs (0.25 to 0.5 μg/ml) were found to harbor truncatedtet(M) alleles that were inactivated by different frameshift mutations. In contrast, five strains bore deletions in thetet(M) promoter region, among which four displayed increased Tc MICs (16 to 64 μg/ml). The same promoter mutations were detected in Tc-resistant mutants selectedin vitrofrom various susceptible strains. Sequence analysis revealed that these deletions might impede the formation of the transcriptional attenuator located immediately upstream oftet(M). Expression inEnterococcus faecalisof atet(M) reporter gene transcribed from these promoter mutants conferred a level of Tc resistance similar to that observed in the parentalS. pneumoniaestrains. These results show that different levels of Tc susceptibility found in clinical isolates ofS. pneumoniaecan be explained by frameshift mutations withintet(M) and by alterations of the upstream transcriptional attenuator.

1996 ◽  
Vol 40 (12) ◽  
pp. 2802-2804 ◽  
Author(s):  
K P Klugman ◽  
T Capper ◽  
A Bryskier

Among 180 clinical isolates of pneumococci, no strains were found to be resistant to levofloxacin (MIC, > or = 4 micrograms/ml) whereas 9% were resistant to ofloxacin and 7% were resistant to ciprofloxacin. Synergism was demonstrated by time-kill studies in nine of nine strains for the combination of levofloxacin and vancomycin and in six of nine strains for levofloxacin plus teicoplanin. The combinations of levofloxacin with rifampin or fusidic acid were indifferent. Resistant mutants could be selected using incremental concentrations of levofloxacin. For two of nine strains that were initially susceptible to levofloxacin, the MICs reached the resistance range (> or = 4 micrograms/ml). In contrast, ciprofloxacin and ofloxacin selected mutants from the susceptible to the resistant range more frequently (four of six and six of seven strains, respectively). These data argue for further study of levofloxacin against penicillin-resistant pneumococci.


2012 ◽  
Vol 56 (6) ◽  
pp. 3406-3408 ◽  
Author(s):  
Gary V. Doern ◽  
Daniel J. Diekema ◽  
Kristopher P. Heilmann ◽  
Cassie L. Dohrn ◽  
Fathollah Riahi ◽  
...  

ABSTRACTThein vitroactivity of ceftaroline, a recently introduced parenteral cephalosporin, was assessed versus 1,750 isolates ofStreptococcus pneumoniaerecovered from patients with a variety of pneumococcal infections in 43 U.S. medical centers during 2010-2011. Using a breakpoint of ≤0.5 μg/ml for susceptibility, all of the isolates were found to be susceptible to ceftaroline. Ceftaroline MICs were consistently 16-fold lower than ceftriaxone MICs. Among the isolates characterized in this investigation, 38.9% were found to be nonsusceptible to penicillin (oral penicillin breakpoints) and 9.1% were nonsusceptible to ceftriaxone (nonmeningitis breakpoints).


Microbiology ◽  
2020 ◽  
Vol 166 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Jaelle C. Brealey ◽  
Peter D. Sly ◽  
Paul R. Young ◽  
Keith J. Chappell

Respiratory syncytial virus (RSV) and Streptococcus pneumoniae are frequently co-associated during acute respiratory infections, particularly amongst infants and young children. In this study, we aimed to identify strains of RSV and serotypes/sequence types of S. pneumoniae associated with co-infections within a cohort of paediatric patients, and to assess RSV-mediated adhesion of pneumococcal isolates. The RSV glycoprotein sequence was determined for 58 RSV-positive samples and molecular serotyping and MLST was used to analyse 26 pneumococcal isolates. We also compared 23 pneumococcal isolates for their adherence to RSV-infected or mock-infected airway epithelia cells using immunofluorescence microscopy and automated particle counting. The tight association between RSV and S. pneumoniae was also visualized using scanning electron microscopy. This study did not identify any statistically significant trend in the strains of RSV and S. pneumoniae associated with co-infections. Furthermore, almost all isolates (22 of 23) showed significantly increased adherence to RSV-infected cells. The level of adherence did not appear to correlate with pneumococcal strain or sequence type, and isolates obtained from RSV-infected patients displayed a similar level of adherence as those from RSV-negative patients. The absence of particular S. pneumoniae or RSV strains associated with co-infection, together with the near ubiquitous presence of RSV-mediated adhesion throughout the pneumococcal clinical isolates, may indicate that the mechanisms governing the association with RSV are of sufficient importance to be maintained across much of the species.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Rasmus Lykke Marvig ◽  
Søren Damkiær ◽  
S. M. Hossein Khademi ◽  
Trine M. Markussen ◽  
Søren Molin ◽  
...  

ABSTRACTPseudomonas aeruginosaairway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist,P. aeruginosadepends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and thePseudomonasheme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation ofP. aeruginosato the host environment. Here we investigated the within-host evolution of the transmissibleP. aeruginosaDK2 lineage. We found positive selection for promoter mutations leading to increased expression of thephusystem. By mimicking conditions of the CF airwaysin vitro, we experimentally demonstrate that increased expression ofphuRconfers a growth advantage in the presence of hemoglobin, thus suggesting thatP. aeruginosaevolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additionalP. aeruginosalineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages,phuRpromoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment ofP. aeruginosainfections in CF patients.IMPORTANCEMost bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogenPseudomonas aeruginosato cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While the regulation and mechanisms of several such iron-scavenging systems have been well described, not much is known about how the within-host selection pressures act on the pathogens’ ability to acquire iron. Here, we investigated the within-host evolution ofP. aeruginosa, and we found evidence thatP. aeruginosaduring long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections.


2014 ◽  
Vol 58 (12) ◽  
pp. 7398-7404 ◽  
Author(s):  
Tamirat Gebru ◽  
Benjamin Mordmüller ◽  
Jana Held

ABSTRACTPlasmodium falciparumgametocytes are not associated with clinical symptoms, but they are responsible for transmitting the pathogen to mosquitoes. Therefore, gametocytocidal interventions are important for malaria control and resistance containment. Currently available drugs and vaccines are not well suited for that purpose. Several dyes have potent antimicrobial activity, but their use against gametocytes has not been investigated systematically. The gametocytocidal activity of nine synthetic dyes and four control compounds was tested against stage V gametocytes of the laboratory strain 3D7 and three clinical isolates ofP. falciparumwith a bioluminescence assay. Five of the fluorescent dyes had submicromolar 50% inhibitory concentration (IC50) values against mature gametocytes. Three mitochondrial dyes, MitoRed, dihexyloxacarbocyanine iodide (DiOC6), and rhodamine B, were highly active (IC50s < 200 nM). MitoRed showed the highest activity against gametocytes, with IC50s of 70 nM against 3D7 and 120 to 210 nM against clinical isolates. All compounds were more active against the laboratory strain 3D7 than against clinical isolates. In particular, the endoperoxides artesunate and dihydroartemisinin showed a 10-fold higher activity against 3D7 than against clinical isolates. In contrast to all clinically used antimalarials, several fluorescent dyes had surprisingly highin vitroactivity against late-stage gametocytes. Since they also act against asexual blood stages, they shall be considered starting points for the development of new antimalarial lead compounds.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Dae Hun Kim ◽  
Su-Young Kim ◽  
Hee Jae Huh ◽  
Nam Yong Lee ◽  
Won-Jung Koh ◽  
...  

ABSTRACT We evaluated the in vitro activity of rifamycin derivatives, including rifampin, rifapentine, rifaximin, and rifabutin, against clinical nontuberculous mycobacteria (NTM) isolates. Of the rifamycin derivatives, rifabutin showed the lowest MICs against all NTM species, including Mycobacterium avium complex, M. abscessus, and M. kansasii. Rifabutin also had effective in vitro activity against macrolide- and aminoglycoside-resistant NTM isolates. Rifabutin could be worth considering as a therapeutic option for NTM disease, particularly drug-resistant disease.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Jees Sebastian ◽  
Sharmada Swaminath ◽  
Rashmi Ravindran Nair ◽  
Kishor Jakkala ◽  
Atul Pradhan ◽  
...  

ABSTRACT Bacterial persisters are a subpopulation of cells that can tolerate lethal concentrations of antibiotics. However, the possibility of the emergence of genetically resistant mutants from antibiotic persister cell populations, upon continued exposure to lethal concentrations of antibiotics, remained unexplored. In the present study, we found that Mycobacterium tuberculosis cells exposed continuously to lethal concentrations of rifampin (RIF) or moxifloxacin (MXF) for prolonged durations showed killing, RIF/MXF persistence, and regrowth phases. RIF-resistant or MXF-resistant mutants carrying clinically relevant mutations in the rpoB or gyrA gene, respectively, were found to emerge at high frequency from the RIF persistence phase population. A Luria-Delbruck fluctuation experiment using RIF-exposed M. tuberculosis cells showed that the rpoB mutants were not preexistent in the population but were formed de novo from the RIF persistence phase population. The RIF persistence phase M. tuberculosis cells carried elevated levels of hydroxyl radical that inflicted extensive genome-wide mutations, generating RIF-resistant mutants. Consistent with the elevated levels of hydroxyl radical-mediated genome-wide random mutagenesis, MXF-resistant M. tuberculosis gyrA de novo mutants could be selected from the RIF persistence phase cells. Thus, unlike previous studies, which showed emergence of genetically resistant mutants upon exposure of bacteria for short durations to sublethal concentrations of antibiotics, our study demonstrates that continuous prolonged exposure of M. tuberculosis cells to lethal concentrations of an antibiotic generates antibiotic persistence phase cells that form a reservoir for the generation of genetically resistant mutants to the same antibiotic or another antibiotic. These findings may have clinical significance in the emergence of drug-resistant tubercle bacilli.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
A. L. Bidaud ◽  
F. Botterel ◽  
A. Chowdhary ◽  
E. Dannaoui

ABSTRACT Candida auris is an emerging, multidrug-resistant pathogen responsible for invasive hospital-acquired infections. Flucytosine is an effective anti-Candida species drug, but which cannot be used as a monotherapy because of the risk of development of resistant mutants during treatment. It is, therefore, noteworthy to test possible combinations with flucytosine that may have a synergistic interaction. In this study, we determined the in vitro interaction between flucytosine and amphotericin B, micafungin, or voriconazole. These combinations have been tested against 15 C. auris isolates. The MIC ranges (geometric mean [Gmean]) of flucytosine, amphotericin B, micafungin, and voriconazole were 0.125 to 1 μg/ml (0.42 μg/ml), 0.25 to 1 μg/ml (0.66 μg/ml), 0.125 to 0.5 μg/ml (0.3 μg/ml), and 0.03 to 4 μg/ml (1.05 μg/ml), respectively. When tested in combination, indifferent interactions were mostly observed with fractional inhibitory concentration index values from 0.5 to 1, 0.31 to 1.01, and 0.5 to 1.06 for the combinations of flucytosine with amphotericin B, micafungin, and voriconazole, respectively. A synergy was observed for the strain CBS 10913 from Japan. No antagonism was observed for any combination. The combination of flucytosine with amphotericin B or micafungin may be relevant for the treatment of C. auris infections.


2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Edgar J. Scott ◽  
Nicole R. Luke-Marshall ◽  
Anthony A. Campagnari ◽  
David W. Dyer

Here, we report the draft genome sequence of Streptococcus pneumoniae EF3030, a pediatric otitis media isolate active in biofilm assays of epithelial colonization. The final draft assembly included 2,209,198 bp; the annotation predicted 2,120 coding DNA sequences (CDSs), 4 complete rRNA operons, 58 tRNAs, 3 noncoding RNAs (ncRNAs), and 199 pseudogenes.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Sarah M. McLeod ◽  
Samir H. Moussa ◽  
Meredith A. Hackel ◽  
Alita A. Miller

ABSTRACT Acinetobacter baumannii-calcoaceticus complex (ABC) organisms cause severe infections that are difficult to treat due to preexisting antibiotic resistance. Sulbactam-durlobactam (formerly sulbactam-ETX2514) (SUL-DUR) is a β-lactam–β-lactamase inhibitor combination antibiotic designed to treat serious infections caused by ABC organisms, including multidrug-resistant (MDR) strains. The in vitro antibacterial activities of SUL-DUR and comparator agents were determined by broth microdilution against 1,722 clinical isolates of ABC organisms collected in 2016 and 2017 from 31 countries across Asia/South Pacific, Europe, Latin America, the Middle East, and North America. Over 50% of these isolates were resistant to carbapenems. Against this collection of global isolates, SUL-DUR had a MIC50/MIC90 of 1/2 μg/ml compared to a MIC50/MIC90 of 8/64 μg/ml for sulbactam alone. This level of activity was found to be consistent across organisms, regions, sources of infection, and subsets of resistance phenotypes, including MDR and extensively drug-resistant isolates. The SUL-DUR activity was superior to those of the tested comparators, with only colistin having similar potency. Whole-genome sequencing of the 39 isolates (2.3%) with a SUL-DUR MIC of >4 μg/ml revealed that these strains encoded either the metallo-β-lactamase NDM-1, which durlobactam does not inhibit, or single amino acid substitutions near the active site of penicillin binding protein 3 (PBP3), the primary target of sulbactam. In summary, SUL-DUR demonstrated potent antibacterial activity against recent, geographically diverse clinical isolates of ABC organisms, including MDR isolates.


Sign in / Sign up

Export Citation Format

Share Document