scholarly journals Formulation Development of Retrocyclin 1 Analog RC-101 as an Anti-HIV Vaginal Microbicide Product

2011 ◽  
Vol 55 (5) ◽  
pp. 2282-2289 ◽  
Author(s):  
A. B. Sassi ◽  
M. R. Cost ◽  
A. L. Cole ◽  
A. M. Cole ◽  
D. L. Patton ◽  
...  

ABSTRACTRC-101 is a synthetic microbicide analog of retrocyclin, which has shownin vitroactivity against X4 and R5 HIV-1. In an effort to develop a safe and effective RC-101 vaginal microbicide product, we assessed safety inex vivomacaque and human models and efficacy usingin vitroandex vivomodels. A polyvinyl-alcohol vaginal film containing RC-101 (100 μg/film) was developed. Formulation assessment was conducted by evaluating disintegration, drug content, mechanical properties, and stability. Efficacy was evaluated byin vitroperipheral blood mononuclear cells (PBMC) assay andex vivohuman ectocervical tissue explant model.Ex vivosafety studies were conducted by exposing RC-101 to an excised monkey reproductive tract and excised human ectocervical tissue. RC-101 100 μg films were shown to be safe to human and monkey tissue and effective against HIV-1in vitroandex vivoin human ectocervical tissue. The 90% inhibitory concentration (IC90) for RC-101 films at 2,000 μg (IC90= 57.5 μM) using anex vivomodel was 10-fold higher than the IC90observed using anin vitromodel (IC90= 5.0 μM). RC-101 films were stable for 1 month at 25°C, within vitrobioactivity maintained for up to 6 months. RC-101 was developed in a quick-dissolve film formulation that was shown to be safe in anex vivomodel and effective inin vitroandex vivomodels. RC-101 film formulations were shown to maintain bioactivity for a period of 6 months. Findings from the present study contribute to the development of a safe and effective topical microbicide product.

2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Subhra Mandal ◽  
Michael Belshan ◽  
Ashley Holec ◽  
You Zhou ◽  
Christopher J. Destache

ABSTRACT Among various FDA-approved combination antiretroviral drugs (cARVs), emtricitabine (FTC) has been a very effective nucleoside reverse transcriptase inhibitor. Thus far, FTC is the only deoxycytidine nucleoside analog. However, a major drawback of FTC is its large volume distribution (averaging 1.4 liters/kg) and short plasma half-life (8 to 10 h), necessitating a high daily dosage. Thus, we propose an innovative fabrication method of loading FTC in poly(lactic-co-glycolic acid) polymeric nanoparticles (FTC-NPs), potentially overcoming these drawbacks. Our nanoformulation demonstrated enhanced FTC loading (size of <200 nm and surface charge of −23 mV) and no to low cytotoxicity with improved biocompatibility compared to those with FTC solution. An ex vivo endosomal release assay illustrated that NP entrapment prolongs FTC release over a month. Intracellular retention studies demonstrate sustained FTC retention over time, with approximately 8% (24 h) to 68% (96 h) release with a mean retention of ∼0.74 μg of FTC/105 cells after 4 days. An in vitro HIV-1 inhibition study demonstrated that FTC-NP treatment results in a 50% inhibitory concentration (IC50) ∼43 times lower in TZM-bl cells (0.00043 μg/ml) and ∼3.7 times lower (0.009 μg/ml) in peripheral blood mononuclear cells (PBMCs) than with FTC solution (TZM-bl cells, 0.01861, and PBMCs, 0.033 μg/ml). Further, on primary PBMCs, FTC-NPs also illustrate an HIV-1 infection blocking efficacy comparable to that of FTC solution. All the above-described studies substantiate that FTC nanoformulation prolongs intracellular FTC concentration and inhibition of HIV infection. Therefore, FTC-NPs potentially could be a long-acting, stable formulation to ensure once-biweekly dosing to prevent or treat HIV infection.


2008 ◽  
Vol 76 (10) ◽  
pp. 4538-4545 ◽  
Author(s):  
William W. Kwok ◽  
Junbao Yang ◽  
Eddie James ◽  
John Bui ◽  
Laurie Huston ◽  
...  

ABSTRACT Cellular immune responses against protective antigen (PA) of Bacillus anthracis in subjects that received the anthrax vaccine adsorbed (AVA) vaccine were examined. Multiple CD4+ T-cell epitopes within PA were identified by using tetramer-guided epitope mapping. PA-reactive CD4+ T cells with a CD45RA− phenotype were also detected by direct ex vivo staining of peripheral blood mononuclear cells (PBMC) with PA-specific tetramers. Surprisingly, PA-specific T cells were also detected in PBMC of nonvaccinees after a single cycle of in vitro PA stimulation. However, PA-reactive CD4+ T cells in nonvaccinees occurred at lower frequencies than those in vaccinees. The majority of PA-reactive T cells from nonvaccinees were CD45RA+ and exhibited a Th0/Th1 cytokine profile. In contrast, phenotyping and cytokine profile analyses of PA-reactive CD4+ T cells from vaccinees indicated that vaccination leads to commitment of PA-reactive T cells to a Th2 lineage, including generation of PA-specific, pre-Th2 central memory T cells. These results demonstrate that the current AVA vaccine is effective in skewing the development of PA CD4+ T cells to the Th2 lineage. The data also demonstrated the feasibility of using class II tetramers to analyze CD4+ cell responses and lineage development after vaccination.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-6
Author(s):  
Namita Kumari ◽  
Marina Jerebtsova ◽  
Songping Wang ◽  
Sharmin Diaz ◽  
Sergei Nekhai

Concerted action of numerous positively acting cellular factors is essential for Human immunodeficiency virus type 1 (HIV-1) replication but in turn is challenged by anti-viral restriction factors. Previously we showed that ex vivo one round HIV-1 replication and replication of fully competent T-tropic HIV-1(IIIB) is significantly reduced in peripheral blood mononuclear cells (PBMCs) obtained from patients with Sickle Cell Disease (SCD). Further, we identified and confirmed CDKN1A (p21) and CH25H as host restriction factors expressed in SCD PBMCs that may contribute to the HIV-1 inhibition, in addition to the previously reported SAMHD1 and IKBα. Since CH25H is an interferon stimulated gene (ISG), we analyzed IRFs and interferon expression in SCD PBMCs. Higher levels of IRF7 and IFNβ mRNA were observed in SCD PBMCs compared to controls. We probed further to ascertain if hemin or sickle Hb was responsible for interferon response. We found upregulation of IFNβ in THP-1 - derived macrophages treated with lysates of HbSS RBCs or purified HbS as compared to untreated or HbA treated controls. HbSS RBCs lysates and purified HbS inhibited HIV-1 gag mRNA expression in monocyte-derived macrophages infected with HIV-1(Ba-L). Recent clinical study showed increased levels of CD4 in HIV-1 infected SCD patients in Africa. Thus we analyzed CD4 levels in HIV-1 IIIB infected SCD PBMCs, and found them to be higher compared to controls. Levels of HIV-1 nef mRNA, that controls CD4 expression was lower in HIV-1 IIIB infected SCD PBMCs. As Nef counteracts SERINC3/5 restriction factor, we analyzed its expression as well as the expression of AP2 clathrin adaptor that is required for Nef mediated internalization of CD4. AP2 expression was lower and SERINC5 expression was higher in SCD PBMCs. CONCLUSIONS: SCD PBMCs could resist HIV-1 infection because of the increased IFNβ production by macrophages exposed to HbSS or sickle cell RBCs. SCD PBMC have increased levels of SERNIC5 and lower levels of HIV-1 Nef and host AP2 expression that, culumlatively, can increased CD4 levels and lead to the overall improved immunological health of SCD patients. ACKNOWLEDGMENTS: This work was supported by NIH Research Grants (1P50HL118006, 1R01HL125005, 1SC1HL150685, 5U54MD007597, 1UM1AI26617 and P30AI087714). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2760-2769 ◽  
Author(s):  
Claudio Casoli ◽  
Elisa Vicenzi ◽  
Andrea Cimarelli ◽  
Giacomo Magnani ◽  
Paolo Ciancianaini ◽  
...  

The influence of human T-cell leukemia/lymphoma virus type II (HTLV-II) in individuals also infected with HIV-1 is poorly understood. To evaluate the reciprocal influence of HTLV-II and HIV-1 infection, primary peripheral blood mononuclear cell (PBMC) cultures from coinfected individuals were established in the presence of interleukin 2 (IL-2). In these cultures, the kinetics of HTLV-II replication always preceded those of HIV-1. Noteworthy, the kinetics of HIV-1 production were inversely correlated to the HTLV-II proviral load in vivo and its replication ex vivo. These observations suggested a potential interaction between the 2 retroviruses. In this regard, the levels of IL-2, IL-6, and tumor necrosis factor- (TNF-) were measured in the same coinfected PBMC cultures. Endogenous IL-2 was not produced, whereas IL-6 and TNF- were secreted at levels compatible with their known ability to up-regulate HIV-1 expression. The HIV-suppressive CC-chemokines RANTES, macrophage inflammatory protein-1 (MIP-1), and MIP-1β were also determined in IL-2–stimulated PBMC cultures. Of interest, their kinetics and concentrations were inversely related to those of HIV-1 replication. Experiments were performed in which CD8+ T cells or PBMCs from HTLV-II monoinfected individuals were cocultivated with CD4+ T cells from HIV-1 monoinfected individuals separated by a semipermeable membrane in the presence or absence of antichemokine neutralizing antibodies. The results indicate that HTLV-II can interfere with the replicative potential of HIV-1 by up-regulating viral suppressive CC-chemokines and, in particular, MIP-1. This study is the first report indicating that HTLV-II can influence HIV replication, at least in vitro, via up-regulation of HIV-suppressive chemokines.


2019 ◽  
Vol 20 (5) ◽  
pp. 1139 ◽  
Author(s):  
Tsui Mao ◽  
Carol Miao ◽  
Yi Liao ◽  
Ying Chen ◽  
Chia Yeh ◽  
...  

γδ-T-cells have attracted attention because of their potent cytotoxicity towards tumors. Most γδ-T-cells become activated via a major histocompatibility complex (MHC)-independent pathway by the interaction of their receptor, Natural Killer Group 2 Member D (NKG2D) with the tumor-specific NKG2D ligands, including MHC class I-related chain A/B (MICA/B) and UL16-binding proteins (ULBPs), to kill tumor cells. However, despite their potent antitumor effects, the treatment protocols specifically targeting ovarian tumors require further improvements. Ovarian cancer is one of the most lethal and challenging female malignancies worldwide because of delayed diagnoses and resistance to traditional chemotherapy. In this study, we successfully enriched and expanded γδ-T-cells up to ~78% from peripheral blood mononuclear cells (PBMCs) with mostly the Vγ9Vδ2-T-cell subtype in the circulation. We showed that expanded γδ-T-cells alone exerted significant cytotoxic activities towards specific epithelial-type OVCAR3 and HTB75 cells, whereas the combination of γδ-T cells and pamidronate (PAM), a kind of aminobisphosphonates (NBPs), showed significantly enhanced cytotoxic activities towards all types of ovarian cancer cells in vitro. Furthermore, in tumor xenografts of immunodeficient NSG mice, γδ-T-cells not only suppressed tumor growth but also completely eradicated preexisting tumors with an initial size of ~5 mm. Thus, we concluded that γδ-T-cells alone possess dramatic cytotoxic activities towards epithelial ovarian cancers both in vitro and in vivo. These results strongly support the potential of clinical immunotherapeutic application of γδ-T-cells to treat this serious female malignancy.


2016 ◽  
Vol 60 (7) ◽  
pp. 3956-3969 ◽  
Author(s):  
Beata Nowicka-Sans ◽  
Tricia Protack ◽  
Zeyu Lin ◽  
Zhufang Li ◽  
Sharon Zhang ◽  
...  

ABSTRACTBMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n= 87) ofgag/prrecombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to anin vitromeasurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally,in vitrocombination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potentin vitroanti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat.


2009 ◽  
Vol 53 (5) ◽  
pp. 1797-1807 ◽  
Author(s):  
Carolina Herrera ◽  
Martin Cranage ◽  
Ian McGowan ◽  
Peter Anton ◽  
Robin J. Shattock

ABSTRACT We investigated whether reverse transcriptase (RT) inhibitors (RTI) can be combined to inhibit human immunodeficiency virus type 1 (HIV-1) infection of colorectal tissue ex vivo as part of a strategy to develop an effective rectal microbicide. The nucleotide RTI (NRTI) PMPA (tenofovir) and two nonnucleoside RTI (NNRTI), UC-781 and TMC120 (dapivirine), were evaluated. Each compound inhibited the replication of the HIV isolates tested in TZM-bl cells, peripheral blood mononuclear cells, and colorectal explants. Dual combinations of the three compounds, either NRTI-NNRTI or NNRTI-NNRTI combinations, were more active than any of the individual compounds in both cellular and tissue models. Combinations were key to inhibiting infection by NRTI- and NNRTI-resistant isolates in all models tested. Moreover, we found that the replication capacities of HIV-1 isolates in colorectal explants were affected by single point mutations in RT that confer resistance to RTI. These data demonstrate that colorectal explants can be used to screen compounds for potential efficacy as part of a combination microbicide and to determine the mucosal fitness of RTI-resistant isolates. These findings may have important implications for the rational design of effective rectal microbicides.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2303-2303 ◽  
Author(s):  
Massimo Sanchez ◽  
Amanda Leblanc ◽  
Annalisa Mancini ◽  
Francesca Masiello ◽  
Valentina Tirelli ◽  
...  

Abstract The safety and adequacy of the blood supply is threatened by natural disasters, social and political events, epidemics, and emerging infections. During shortages, frozen blood is used to supplement the blood supply. Current regulations allow red blood cells to be stored frozen up to ten years; however, the shelf-life of such products is limited once blood is thawed. Cultured human erythroid cells derived in vitro from either fresh or cryopreserved CD34+ cells or peripheral blood mononuclear cells potentially represent an alternative source of erythrocytes for transfusion. However, it is unknown if normal erythroid cells undergoing ex-vivo expansion with growth factors will remain functional or develop genetic rearrangements in culture making them unsuitable for transfusion. We have compared the proliferative and differentiation potential of human erythroblasts obtained in culture from the peripheral blood mononuclear cells (PBMC) of adult donors. This analysis included freshly expanded erythroblasts as well as erythroblasts cryopreserved and stored for short (1 month) and long (8 years) periods. PBMC from four volunteer blood donors were prepared using gradient-density centrifugation and cryopreserved in DMSO in June 2000. One months later, 2x107 PBMC from one of the donors were thawed and cultured under conditions that allow massive ex vivo generation of erythroblasts (HEMA culture, Migliaccio et al Blood Cells Mol Dis2002;28:169-80). These cultures were stimulated with recombinant hSCF (50ng/mL), hGM-CSF (1ng/ml), hIL3 (1U/mL), hEPO (1U/mL) and contained dexamethasone and estradiol (each 10−6 M). Twenty million PBMC from the three additional donors were thawed and cultured under HEMA conditions in 2008. In all the three cases, the day 9 cultures contained an average of 10x107 cells, 95% of which were erythroid by CD36 and CD235a staining. These day 9 cells were either cultured for 4 additional days or cryopreserved (&gt;10 individual vials per donor containing 5x106 each). Cells were subcultured and maintained either under HEMA conditions (to assess their proliferation ability) or stimulated with EPO alone (5U/ mL) (to assess maturation). In May 2008, aliquots of the erythroblasts obtained from all donors were thawed and cultured again and amplification and differentiation potential of the freshly expanded and thawed cells were compared. Cells thawed after few months or 8 years of cryopreservation gave similar results and the data were pooled. The viability of the erythroblasts after thawing was 60–70%. After 4 days under HEMA conditions, both freshly expanded and cryopreserved erythroblasts doubled in numbers and retained an immature erythroid phenotype (CD36highCD235alow). On the other hand, in cultures containing EPO alone, the erythroblasts remained constant in number but progressed to a mature CD36posCD235ahigh phenotype. The results are summarized in the following table: Proliferation and Maturation Profile of Fresh and Cryopreserved Human Erythroblasts Fold Increase Phenotype CD36highCD235alow CD36highCD235ahigh Fresh cells HEMA culture 2 53% 40% EPO alone 1 15% 80% Thawed Cells HEMA culture 2 46% 36% EPO alone 1 5% 90% The eight-years cryopreserved erythroblasts expanded in culture were also cytogenetically evaluated. Karyotype and multicolor FISH analyses demonstrated a normal 46,XY karyotype with no obvious genomic rearrangements. To determine whether cells carried any known in utero leukemic genomic rearrangements, interphase FISH studies were performed for TEL/ETV6-AML1, MLL, 5q31 (EGR1) and 7q31 loci. In 800 evaluated interphase nuclei, all loci were present in disomy. This data indicates that human erythroblasts obtained in culture can be efficiently cryopreserved, remain functional in culture and do not acquire chromosomal abnormalities detectable by multicolor FISH analysis. These observations suggest that cultured erythroblasts should be further evaluated to determine if they represent a more suitable long term storage product than cryopreserved mature red blood cells.


Sign in / Sign up

Export Citation Format

Share Document