scholarly journals Vacuolar Sequestration of Azoles, a Novel Strategy of Azole Antifungal Resistance Conserved across Pathogenic and Nonpathogenic Yeast

2019 ◽  
Vol 63 (3) ◽  
Author(s):  
Nitesh Kumar Khandelwal ◽  
Mohd Wasi ◽  
Remya Nair ◽  
Meghna Gupta ◽  
Mohit Kumar ◽  
...  

ABSTRACT Target alteration and overproduction and drug efflux through overexpression of multidrug transporters localized in the plasma membrane represent the conventional mechanisms of azole antifungal resistance. Here, we identify a novel conserved mechanism of azole resistance not only in the budding yeast Saccharomyces cerevisiae but also in the pathogenic yeast Candida albicans. We observed that the vacuolar-membrane-localized, multidrug resistance protein (MRP) subfamily, ATP-binding cassette (ABC) transporter of S. cerevisiae, Ybt1, could import azoles into vacuoles. Interestingly, the Ybt1 homologue in C. albicans, Mlt1p, could also fulfill this function. Evidence that the process is energy dependent comes from the finding that a Mlt1p mutant version made by converting a critical lysine residue in the Walker A motif of nucleotide-binding domain 1 (required for ATP hydrolysis) to alanine (K710A) was not able to transport azoles. Additionally, we have shown that, as for other eukaryotic MRP subfamily members, deletion of the conserved phenylalanine amino acid at position 765 (F765Δ) results in mislocalization of the Mlt1 protein; this mislocalized protein was devoid of the azole-resistant attribute. This finding suggests that the presence of this protein on vacuolar membranes is an important factor in azole resistance. Further, we report the importance of conserved residues, because conversion of two serines (positions 973 and 976, in the regulatory domain and in the casein kinase I [CKI] consensus sequence, respectively) to alanine severely affected the drug resistance. Hence, the present study reveals vacuolar sequestration of azoles by the ABC transporter Ybt1 and its homologue Mlt1 as an alternative strategy to circumvent drug toxicity among pathogenic and nonpathogenic yeasts.

2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Olga Rivero-Menendez ◽  
Juan Carlos Soto-Debran ◽  
Narda Medina ◽  
Jose Lucio ◽  
Emilia Mellado ◽  
...  

ABSTRACT Antifungal resistance is one of the major causes of the increasing mortality rates for fungal infections, especially for those caused by Aspergillus spp. A surveillance program was established in 2014 in the Spanish National Center for Microbiology for tracking resistance in the most prevalent Aspergillus species. A total of 273 samples were included in the study and were initially classified as susceptible or resistant according to EUCAST breakpoints. Several Aspergillus cryptic species were found within the molecularly identified isolates. Cyp51 mutations were characterized for Aspergillus fumigatus, Aspergillus terreus, and Aspergillus flavus sensu stricto strains that were classified as resistant. Three A. fumigatus sensu stricto strains carried the TR34/L98H resistance mechanism, while two harbored G54R substitution and one harbored the TR46/Y121F/T289A mechanism. Seventeen strains had no mutations in cyp51A, with ten of them resistant only to isavuconazole. Three A. terreus sensu stricto strains harbored D344N substitution in cyp51A, one of them combined with M217I, and another carried an A249G novel mutation. Itraconazole-resistant A. flavus sensu stricto strains harbored P220L and H349R alterations in cyp51A and cyp51C, respectively, that need further investigation on their implication in azole resistance.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Eva-Maria Mayr ◽  
Bernardo Ramírez-Zavala ◽  
Ines Krüger ◽  
Joachim Morschhäuser

ABSTRACT The recently emerged pathogenic yeast Candida auris is a major concern for human health, because it is easily transmissible, difficult to eradicate from hospitals, and highly drug resistant. Most C. auris isolates are resistant to the widely used antifungal drug fluconazole due to mutations in the target enzyme Erg11 and high activity of efflux pumps, such as Cdr1. In the well-studied, distantly related yeast Candida albicans, overexpression of drug efflux pumps also is a major mechanism of acquired fluconazole resistance and caused by gain-of-function mutations in the zinc cluster transcription factors Mrr1 and Tac1. In this study, we investigated a possible involvement of related transcription factors in efflux pump expression and fluconazole resistance of C. auris. The C. auris genome contains three genes encoding Mrr1 homologs and two genes encoding Tac1 homologs, and we generated deletion mutants lacking these genes in two fluconazole-resistant strains from clade III and clade IV. Deletion of TAC1b decreased the resistance to fluconazole and voriconazole in both strain backgrounds, demonstrating that the encoded transcription factor contributes to azole resistance in C. auris strains from different clades. CDR1 expression was not or only minimally affected in the mutants, indicating that Tac1b can confer increased azole resistance by a CDR1-independent mechanism. IMPORTANCE Candida auris is a recently emerged pathogenic yeast that within a few years after its initial description has spread all over the globe. C. auris is a major concern for human health, because it can cause life-threatening systemic infections, is easily transmissible, and is difficult to eradicate from hospital environments. Furthermore, C. auris is highly drug resistant, especially against the widely used antifungal drug fluconazole. Mutations in the drug target and high activity of efflux pumps are associated with azole resistance, but it is not known how drug resistance genes are regulated in C. auris. We have investigated the potential role of several candidate transcriptional regulators in the intrinsic fluconazole resistance of C. auris and identified a transcription factor that contributes to the high resistance to fluconazole and voriconazole of two C. auris strains from different genetic clades, thereby providing insight into the molecular basis of drug resistance of this medically important yeast.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Bao Gia Vu ◽  
Grace Heredge Thomas ◽  
W. Scott Moye-Rowley

ABSTRACTA crucial limitation in antifungal chemotherapy is the limited number of antifungal drugs currently available. Azole drugs represent the most commonly used chemotherapeutic, and loss of efficacy of these drugs is a major risk factor in successful treatment of a variety of fungal diseases.Candida glabratais a pathogenic yeast that is increasingly found associated with bloodstream infections, a finding likely contributed to by its proclivity to develop azole drug resistance.C. glabrataoften acquires azole resistance via gain-of-function (GOF) mutations in the transcription factor Pdr1. These GOF forms of Pdr1 drive elevated expression of target genes, including the ATP-binding cassette transporter-encodingCDR1locus. GOF alleles ofPDR1have been extensively studied, but little is known of how Pdr1 is normally regulated. Here we test the idea that reduction of ergosterol biosynthesis (as occurs in the presence of azole drugs) might trigger activation of Pdr1 function. Using two different means of genetically inhibiting ergosterol biosynthesis, we demonstrated that Pdr1 activity and target gene expression are elevated in the absence of azole drug. Blocks at different points in the ergosterol pathway lead to Pdr1 activation as well as to induction of other genes in this pathway. Delivery of the signal from the ergosterol pathway to Pdr1 involves the transcription factor Upc2A, anERGgene regulator. We show that Upc2A binds directly to thePDR1andCDR1promoters. Our studies argue for a physiological link between ergosterol biosynthesis and Pdr1-dependent gene regulation that is not restricted to efflux of azole drugs.IMPORTANCEA likely contributor to the increased incidence of non-albicanscandidemias involvingCandida glabratais the ease with which this yeast acquires azole resistance, in large part due to induction of the ATP-binding cassette transporter-encoding geneCDR1. Azole drugs lead to induction of Pdr1 transactivation, with a central model being that this factor binds these drugs directly. Here we provide evidence that Pdr1 is activated without azole drugs by the use of genetic means to inhibit expression of azole drug target-encoding geneERG11. These acute reductions in Erg11 levels lead to elevated Pdr1 activity even though no drug is present. A key transcriptional regulator of theERGpathway, Upc2A, is shown to directly bind to thePDR1andCDR1promoters. We interpret these data as support for the view that Pdr1 function is responsive to ergosterol biosynthesis and suggest that this connection reveals the normal physiological circuitry in which Pdr1 participates.


2014 ◽  
Vol 58 (11) ◽  
pp. 6904-6912 ◽  
Author(s):  
Sanjoy Paul ◽  
Thomas B. Bair ◽  
W. Scott Moye-Rowley

ABSTRACTThe fungal pathogenCandida glabratais an emerging cause of candidiasis in part owing to its robust ability to acquire tolerance to the major clinical antifungal drug fluconazole. Similar to the related speciesCandida albicans,C. glabratamost typically gains azole tolerance via transcriptional induction of a suite of resistance genes, including a locus encoding an ABCG-type ATP-binding cassette (ABC) transporter that is referred to asCDR1inCandidaspecies. InC. glabrata,CDR1expression is controlled primarily by the activity of a transcriptional activator protein called Pdr1. Strains exhibiting reduced azole susceptibility often contain substitution mutations inPDR1that in turn lead to elevated mRNA levels of target genes with associated azole resistance. Pdr1 activity is also induced upon loss of the mitochondrial genome status and upon challenge by azole drugs. While extensive analyses of the transcriptional effects of Pdr1 have identified a number of genes that are regulated by this factor, we cannot yet separate direct from indirect target genes. Here we used chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing (ChIP-seq) to identify the promoters and associated genes directly regulated by Pdr1. These genes include many that are shared with the yeastSaccharomyces cerevisiaebut others that are unique toC. glabrata, including the ABC transporter-encoding locusYBT1, genes involved in DNA repair, and several others. These data provide the outline for understanding the primary response genes involved in production of Pdr1-dependent azole resistance inC. glabrata.


2011 ◽  
Vol 55 (5) ◽  
pp. 1852-1860 ◽  
Author(s):  
Sélène Ferrari ◽  
Maurizio Sanguinetti ◽  
Flavia De Bernardis ◽  
Riccardo Torelli ◽  
Brunella Posteraro ◽  
...  

ABSTRACTMitochondrial dysfunction is one of the possible mechanisms by which azole resistance can occur inCandida glabrata. Cells with mitochondrial DNA deficiency (so-called “petite mutants”) upregulate ATP binding cassette (ABC) transporter genes and thus display increased resistance to azoles. Isolation of suchC. glabratamutants from patients receiving antifungal therapy or prophylaxis has been rarely reported. In this study, we characterized two sequential and relatedC. glabrataisolates recovered from the same patient undergoing azole therapy. The first isolate (BPY40) was azole susceptible (fluconazole MIC, 4 μg/ml), and the second (BPY41) was azole resistant (fluconazole MIC, >256 μg/ml). BPY41 exhibited mitochondrial dysfunction and upregulation of the ABC transporter genesC. glabrata CDR1(CgCDR1),CgCDR2, andCgSNQ2. We next assessed whether mitochondrial dysfunction conferred a selective advantage during host infection by testing the virulence of BPY40 and BPY41 in mice. Surprisingly, even within vitrogrowth deficiency compared to BPY40, BPY41 was more virulent (as judged by mortality and fungal tissue burden) than BPY40 in both systemic and vaginal murine infection models. The increased virulence of the petite mutant correlated with a drastic gain of fitness in mice compared to that of its parental isolate. To understand this unexpected feature, genome-wide changes in gene expression driven by the petite mutation were analyzed by use of microarrays duringin vitrogrowth. Enrichment of specific biological processes (oxido-reductive metabolism and the stress response) was observed in BPY41, all of which was consistent with mitochondrial dysfunction. Finally, some genes involved in cell wall remodelling were upregulated in BPY41 compared to BPY40, which may partially explain the enhanced virulence of BPY41. In conclusion, this study shows for the first time that mitochondrial dysfunction selectedin vivounder azole therapy, even if strongly affectingin vitrogrowth characteristics, can confer a selective advantage under host conditions, allowing theC. glabratamutant to be more virulent than wild-type isolates.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Sanjoy Paul ◽  
Daniel Diekema ◽  
W. Scott Moye-Rowley

ABSTRACT While azole drugs targeting the biosynthesis of ergosterol are effective antifungal agents, their extensive use has led to the development of resistant organisms. Infections involving azole-resistant forms of the filamentous fungus Aspergillus fumigatus are often associated with genetic changes in the cyp51A gene encoding the lanosterol α14 demethylase target enzyme. Both a sequence duplication in the cyp51A promoter (TR34) and a substitution mutation in the coding sequence (L98H) are required for the full expression of azole resistance. A mechanism commonly observed in pathogenic yeast such as Candida albicans involves gain-of-function mutations in transcriptional regulatory proteins that induce expression of genes encoding ATP-binding cassette (ABC) transporters. We and others have found that an ABC transporter protein called Cdr1B (here referred to as AbcG1) is required for wild-type azole resistance in A. fumigatus. Here, we test the genetic relationship between the TR34 L98H allele of cyp51A and an abcG1 null mutation. Loss of AbcG1 from a TR34 L98H cyp51A-containing strain caused a large decrease in the azole resistance of the resulting double-mutant strain. We also generated antibodies that enabled the detection of both the wild-type and L98H forms of the Cyp51A protein. The introduction of the L98H lesion into the cyp51A gene led to a decreased production of immunoreactive enzyme, suggesting that this mutant protein is unstable. Our data confirm the importance of AbcG1 function during azole resistance even in a strongly drug-resistant background.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Ana Alastruey-Izquierdo ◽  
Laura Alcazar-Fuoli ◽  
Olga Rivero-Menéndez ◽  
Josefina Ayats ◽  
Carmen Castro ◽  
...  

ABSTRACT Antifungal resistance is increasing by the emergence of intrinsically resistant species and by the development of secondary resistance in susceptible species. A previous study performed in Spain revealed levels of azole resistance in molds of between 10 and 12.7%, but secondary resistance in Aspergillus fumigatus was not detected. We used itraconazole (ITZ)-supplemented medium to select resistant strains. A total of 500 plates supplemented with 2 mg/liter of ITZ were sent to 10 Spanish tertiary hospitals, and molecular identification and antifungal susceptibility testing were performed. In addition, the cyp51A gene in those A. fumigatus strains showing azole resistance was sequenced. A total of 493 isolates were included in the study. Sixteen strains were isolated from patients with an infection classified as proven, 104 were isolated from patients with an infection classified as probable, and 373 were isolated from patients with an infection classified as colonization. Aspergillus was the most frequent genus isolated, at 80.3%, followed by Scedosporium-Lomentospora (7.9%), Penicillium-Talaromyces (4.5%), Fusarium (2.6%), and the order Mucorales (1%). Antifungal resistance was detected in Scedosporium-Lomentospora species, Fusarium, Talaromyces, and Mucorales. Three strains of A. fumigatus sensu stricto were resistant to azoles; two of them harbored the TR34+L98H mechanism of resistance, and the other one had no mutations in cyp51A. The level of azole resistance in A. fumigatus remains low, but cryptic species represent over 10% of the isolates and have a broader but overall higher range of antifungal resistance.


2016 ◽  
Vol 60 (5) ◽  
pp. 3016-3024 ◽  
Author(s):  
Lin Chen ◽  
Kangmin Duan

ABSTRACTPseudomonas aeruginosais an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in thephoQmutant. The results obtained also show that the expression of thephzA1B1C1D1E1operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds inP. aeruginosa, probably by extruding them out of the cell.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Laís Pontes ◽  
Caio Augusto Gualtieri Beraquet ◽  
Teppei Arai ◽  
Guilherme Leite Pigolli ◽  
Luzia Lyra ◽  
...  

ABSTRACT Azole antifungal resistance in Aspergillus fumigatus is a worldwide concern. As in most public hospitals in Brazil, antifungal susceptibility tests are not routinely performed for filamentous fungi at our institution. A 4-year retrospective azole antifungal resistance screening revealed two azole-resistant A. fumigatus clinical isolates carrying the CYP51A TR34 (34-bp tandem repeat)/L98H (change of L to H at position 98)/S297T/F495I resistance mechanism mutations, obtained from two unrelated patients. Broth microdilution antifungal susceptibility testing showed high MICs for itraconazole, posaconazole, and miconazole. Short tandem repeat (STR) typing analysis presented high levels of similarity between these two isolates and clinical isolates with the same mutations reported from the Netherlands, Denmark, and China, as well as environmental isolates from Taiwan. Our findings might indicate that active searching for resistant A. fumigatus is necessary. They also represent a concern considering that our hospital provides tertiary care assistance to immunocompromised patients who may be exposed to resistant environmental isolates. We also serve patients who receive prophylactic antifungal therapy or treatment for invasive fungal infections for years. In these two situations, isolates resistant to the antifungal in use may be selected within the patients themselves. We do not know the potential of this azole-resistant A. fumigatus strain to spread throughout our country. In this scenario, the impact on the epidemiology and use of antifungal drugs will significantly alter patient care, as in other parts of the world. In summary, this finding is an important contribution to alert hospital laboratories conducting routine microbiological testing to perform azole resistance surveillance and antifungal susceptibility tests of A. fumigatus isolates causing infection or colonization in patients at high risk for systemic aspergillosis.


2005 ◽  
Vol 49 (2) ◽  
pp. 668-679 ◽  
Author(s):  
Maurizio Sanguinetti ◽  
Brunella Posteraro ◽  
Barbara Fiori ◽  
Stefania Ranno ◽  
Riccardo Torelli ◽  
...  

ABSTRACT The increasing use of azole antifungals for the treatment of mucosal and systemic Candida glabrata infections has resulted in the selection and/or emergence of resistant strains. The main mechanisms of azole resistance include alterations in the C. glabrata ERG11 gene (CgERG11), which encodes the azole target enzyme, and upregulation of the CgCDR1 and CgCDR2 genes, which encode efflux pumps. In the present study, we evaluated these molecular mechanisms in 29 unmatched clinical isolates of C. glabrata, of which 20 isolates were resistant and 9 were susceptible dose dependent (S-DD) to fluconazole. These isolates were recovered from separate patients during a 3-year hospital survey for antifungal resistance. Four of the 20 fluconazole-resistant isolates were analyzed together with matched susceptible isolates previously taken from the same patients. Twenty other azole-susceptible clinical C. glabrata isolates were included as controls. MIC data for all the fluconazole-resistant isolates revealed extensive cross-resistance to the other azoles tested, i.e., itraconazole, ketoconazole, and voriconazole. Quantitative real-time PCR analyses showed that CgCDR1 and CgCDR2, alone or in combination, were upregulated at high levels in all but two fluconazole-resistant isolates and, to a lesser extent, in the fluconazole-S-DD isolates. In addition, slight increases in the relative level of expression of CgSNQ2 (which encodes an ATP-binding cassette [ABC] transporter and which has not yet been shown to be associated with azole resistance) were seen in some of the 29 isolates studied. Interestingly, the two fluconazole-resistant isolates expressing normal levels of CgCDR1 and CgCDR2 exhibited increased levels of expression of CgSNQ2. Conversely, sequencing of CgERG11 and analysis of its expression showed no mutation or upregulation in any C. glabrata isolate, suggesting that CgERG11 is not involved in azole resistance. When the isolates were grown in the presence of fluconazole, the profiles of expression of all genes, including CgERG11, were not changed or were only minimally changed in the resistant isolates, whereas marked increases in the levels of gene expression, particularly for CgCDR1 and CgCDR2, were observed in either the fluconazole-susceptible or the fluconazole-S-DD isolates. Finally, known ABC transporter inhibitors, such as FK506, were able to reverse the azole resistance of all the isolates. Together, these results provide evidence that the upregulation of the CgCDR1-, CgCDR2-, and CgSNQ2-encoded efflux pumps might explain the azole resistance in our set of isolates.


Sign in / Sign up

Export Citation Format

Share Document