scholarly journals Genomewide Screening for Genes Associated with Gliotoxin Resistance and Sensitivity in Saccharomyces cerevisiae

2008 ◽  
Vol 52 (4) ◽  
pp. 1325-1329 ◽  
Author(s):  
Georgios Chamilos ◽  
Russell E. Lewis ◽  
Gregory A. Lamaris ◽  
Nathaniel D. Albert ◽  
Dimitrios P. Kontoyiannis

ABSTRACT Gliotoxin (GT) is a secondary fungal metabolite with pleiotropic immunosuppressive properties that have been implicated in Aspergillus virulence. However, the mechanisms of GT cytotoxicity and its molecular targets in eukaryotic cells have not been fully characterized. We screened a haploid library of Saccharomyces cerevisiae single-gene deletion mutants (4,787 strains in EUROSCARF) to identify nonessential genes associated with GT increased resistance (GT-IR) and increased sensitivity (GT-IS). The susceptibility of the wild-type parental strain BY4741 to GT was initially assessed by broth microdilution methods using different media. GT-IR and GT-IS were defined as a fourfold increase and decrease, respectively, in MIC, and this was additionally confirmed by susceptibility testing on agar yeast extract-peptone-glucose plates. The specificity of GT-IR and GT-IS mutants exhibiting normal growth compared with the wild-type strain was further tested in studies of their susceptibility to conventional antifungal agents, cycloheximide, and H2O2. GT-IR was associated with the disruption of genes acting in general metabolism (OPI1, SNF1, IFA38), mitochondrial function (RTG2), DNA damage repair (RAD18), and vesicular transport (APL2) and genes of unknown function (YGL235W, YOR345C, YLR456W, YGL072C). The disruption of three genes encoding transsulfuration (CYS3), mitochondrial function (MEF2), and an unknown function (YKL037W) led to GT-IS. Specificity for GT-IR and GT-IS was observed in all mutants. Importantly, the majority (69%) of genes implicated in GT-IR (6/10) and GT-IS (2/3) have human homologs. We identified novel Saccharomyces genes specifically implicated in GT-IR or GT-IS. Because most of these genes are evolutionarily conserved, further characterization of their function could improve our understanding of GT cytotoxicity mechanisms in humans.

2002 ◽  
Vol 22 (20) ◽  
pp. 6946-6948 ◽  
Author(s):  
Joanna Kamińska ◽  
Beata Gajewska ◽  
Anita K. Hopper ◽  
Teresa ˙Zołądek

ABSTRACT Rsp5p is an ubiquitin-protein ligase of Saccharomyces cerevisiae that has been implicated in numerous processes including transcription, mitochondrial inheritance, and endocytosis. Rsp5p functions at multiple steps of endocytosis, including ubiquitination of substrates and other undefined steps. We propose that one of the roles of Rsp5p in endocytosis involves maintenance and remodeling of the actin cytoskeleton. We report the following. (i) There are genetic interactions between rsp5 and several mutant genes encoding actin cytoskeletal proteins. rsp5 arp2, rsp5 end3, and rsp5 sla2 double mutants all show synthetic growth defects. Overexpressed wild-type RSP5 or mutant rsp5 genes with lesions of some WW domains suppress growth defects of arp2 and end3 cells. The defects in endocytosis, actin cytoskeleton, and morphology of arp2 are also suppressed. (ii) Rsp5p and Sla2p colocalize in abnormal F-actin-containing clumps in arp2 and pan1 mutants. Immunoprecipitation experiments confirmed that Rsp5p and Act1p colocalize in pan1 mutants. (iii) Rsp5p and Sla2p coimmunoprecipitate and partially colocalize to punctate structures in wild-type cells. These studies provide the first evidence for an interaction of an actin cytoskeleton protein with Rsp5p. (iv) rsp5-w1 mutants are resistant to latrunculin A, a drug that sequesters actin monomers and depolymerizes actin filaments, consistent with the fact that Rsp5p is involved in actin cytoskeleton dynamics.


2001 ◽  
Vol 21 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Omri Erez ◽  
Chaim Kahana

ABSTRACT Although most cells are capable of transporting polyamines, the mechanism that regulates polyamine transport in eukaryotes is still largely unknown. Using a genetic screen for clones capable of restoring spermine sensitivity to spermine-tolerant mutants ofSaccharomyces cerevisiae, we have demonstrated that Sky1p, a recently identified SR protein kinase, is a key regulator of polyamine transport. Yeast cells deleted for SKY1 developed tolerance to toxic levels of spermine, while overexpression of Sky1p in wild-type cells increased their sensitivity to spermine. Expression of the wild-type Sky1p but not of a catalytically inactive mutant restored sensitivity to spermine. SKY1 disruption results in dramatically reduced uptake of spermine, spermidine, and putrescine. In addition to spermine tolerance, sky1Δ cells exhibit increased tolerance to lithium and sodium ions but somewhat increased sensitivity to osmotic shock. The observed halotolerance suggests potential regulatory interaction between the transport of polyamines and inorganic ions, as suggested in the case of the Ptk2p, a recently described regulator of polyamine transport. We demonstrate that these two kinases act in two different signaling pathways. While deletion or overexpression of SKY1 did not significantly affect Pma1p activity, the ability of overexpressed Sky1p, Ptk1p, and Ptk2p to increase sensitivity to LiCl depends on the integrity ofPPZ1 but not of ENA1.


1988 ◽  
Vol 8 (8) ◽  
pp. 3150-3159
Author(s):  
R Parker ◽  
T Simmons ◽  
E O Shuster ◽  
P G Siliciano ◽  
C Guthrie

Saccharomyces cerevisiae contains at least 24 distinct small nuclear RNAs (snRNAs), several of which are known to be essential for viability and to participate in the splicing of pre-mRNAs; the RNAs in this subset contain binding sites for the Sm antigen, a hallmark of metazoan snRNAs involved in mRNA processing. In contrast, we showed previously that the single-copy genes for three other snRNAs (snR3, snR4, and snR10) are not required for viability, although cells lacking snR10 are growth impaired at low temperature. None of these RNAs associates with the Sm antigen. To assess this apparent correlation, we cloned and sequenced the genes encoding three additional non-Sm snRNAs. Comparison of these genes with nine additional yeast snRNA genes revealed a highly conserved TATA box located 92 +/- 8 nucleotides 5' of the transcriptional start site. By using the technique of gene replacement with null alleles, each of these three single copy genes was shown to be completely dispensable. We constructed multiple mutants to test the hypothesis that, individually, each of these snRNAs is nonessential because the snRNAs play functionally overlapping roles. A mutant lacking five snRNAs (snR3, snR4, snR5, snR8, snR9) was indistinguishable from the wild type, and growth of the sextuple mutant was no more impaired than that in strains lacking only snR10. This widespread dispensability of snRNAs was completely unexpected and forces us to reconsider the possible roles of these ubiquitous RNAs.


1986 ◽  
Vol 6 (11) ◽  
pp. 3990-3998
Author(s):  
S Harashima ◽  
A G Hinnebusch

GCN4 encodes a positive regulator of multiple unlinked genes encoding amino acid biosynthetic enzymes in Saccharomyces cerevisiae. Expression of GCN4 is coupled to amino acid availability by a control mechanism involving GCD1 as a negative effector and GCN1, GCN2, and GCN3 as positive effectors of GCN4 expression. We used reversion of a gcn2 gcn3 double mutation to isolate new alleles of GCD1 and mutations in four additional GCD genes which we designate GCD10, GCD11, GCD12, and GCD13. All of the mutations lead to constitutive derepression of HIS4 transcription in the absence of the GCN2+ and GCN3+ alleles. By contrast, the gcd mutations require the wild-type GCN4 allele for their derepressing effect, suggesting that each acts by influencing the level of GCN4 activity in the cell. Consistent with this interpretation, mutations in each GCD gene lead to constitutive derepression of a GCN4::lacZ gene fusion. Thus, at least five gene products are required to maintain the normal repressed level of GCN4 expression in nonstarvation conditions. Interestingly, the gcd mutations are pleiotropic and also affect growth rate in nonstarvation conditions. In addition, certain alleles lead to a loss of M double-stranded RNA required for the killer phenotype. This pleiotropy suggests that the GCD gene products contribute to an essential cellular function, in addition to, or in conjunction with, their role in GCN4 regulation.


2014 ◽  
Vol 81 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Moeko Chujo ◽  
Shiori Yoshida ◽  
Anri Ota ◽  
Kousaku Murata ◽  
Shigeyuki Kawai

ABSTRACTSaccharomyces cerevisiaenormally cannot assimilate mannitol, a promising brown macroalgal carbon source for bioethanol production. The molecular basis of this inability remains unknown. We found that cells capable of assimilating mannitol arose spontaneously from wild-typeS. cerevisiaeduring prolonged culture in mannitol-containing medium. Based on microarray data, complementation analysis, and cell growth data, we demonstrated that acquisition of mannitol-assimilating ability was due to spontaneous mutations in the genes encoding Tup1 or Cyc8, which constitute a general corepressor complex that regulates many kinds of genes. We also showed that anS. cerevisiaestrain carrying a mutant allele ofCYC8exhibited superior salt tolerance relative to other ethanologenic microorganisms; this characteristic would be highly beneficial for the production of bioethanol from marine biomass. Thus, we succeeded in conferring the ability to assimilate mannitol onS. cerevisiaethrough dysfunction of Tup1-Cyc8, facilitating production of ethanol from mannitol.


1998 ◽  
Vol 18 (12) ◽  
pp. 7353-7359 ◽  
Author(s):  
James A. Marsh ◽  
Helen M. Kalton ◽  
Richard F. Gaber

ABSTRACT Saccharomyces cerevisiae harbors two cyclophilin 40-type enzymes, Cpr6 and Cpr7, which are components of the Hsp90 molecular chaperone machinery. Cpr7 is required for normal growth and is required for maximal activity of heterologous Hsp90-dependent substrates, including glucocorticoid receptor (GR) and the oncogenic tyrosine kinase pp60v-src . In addition, it has recently been shown that Cpr7 plays a major role in negative regulation of the S. cerevisiae heat shock transcription factor (HSF). To better understand functions associated with Cpr7, a search was undertaken for multicopy suppressors of the cpr7Δ slow-growth phenotype. The screen identified a single gene, designatedCNS1 (for cyclophilin seven suppressor), capable of suppressing the cpr7Δ growth defect. Overexpression ofCNS1 in cpr7Δ cells also largely restored GR activity and negative regulation of HSF. In vitro protein retention experiments in which Hsp90 heterocomplexes were precipitated resulted in coprecipitation of Cns1. Interaction between Cns1 and the carboxy terminus of Hsp90 was also shown by two-hybrid analysis. The functional consequences of CNS1 overexpression and its physical association with the Hsp90 machinery indicate that Cns1 is a previously unidentified component of molecular chaperone complexes. Thus far, Cns1 is the only tetratricopeptide repeat-containing component of Hsp90 heterocomplexes found to be essential for cell viability under all conditions tested.


2018 ◽  
Author(s):  
Nairita Maitra ◽  
Jayamani Anandhakumar ◽  
Heidi M. Blank ◽  
Craig D. Kaplan ◽  
Michael Polymenis

ABSTRACTThe question of what determines whether cells are big or small has been the focus of many studies because it is thought that such determinants underpin the coupling of cell growth with cell division. In contrast, what determines the overall pattern of how cell size is distributed within a population of wild type or mutant cells has received little attention. Knowing how cell size varies around a characteristic pattern could shed light on the processes that generate such a pattern and provide a criterion to identify its genetic basis. Here, we show that cell size values of wild type Saccharomyces cerevisiae cells fit a gamma distribution, in haploid and diploid cells, and under different growth conditions. To identify genes that influence this pattern, we analyzed the cell size distributions of all single-gene deletion strains in Saccharomyces cerevisiae. We found that yeast strains which deviate the most from the gamma distribution are enriched for those lacking gene products functioning in gene expression, especially those in transcription or transcription-linked processes. We also show that cell size is increased in mutants carrying altered activity substitutions in Rpo21p/Rpb1, the largest subunit of RNA polymerase II (Pol II). Lastly, the size distribution of cells carrying extreme altered activity Pol II substitutions deviated from the expected gamma distribution. Our results are consistent with the idea that genetic defects in widely acting transcription factors or Pol II itself compromise both cell size homeostasis and how the size of individual cells is distributed in a population.


2021 ◽  
Vol 7 (10) ◽  
pp. 814
Author(s):  
Xiaohan Zhu ◽  
Mohammad Sayari ◽  
Md. Rashidul Islam ◽  
Fouad Daayf

NADPH oxidase (Nox) genes are responsible for Reactive Oxygen Species (ROS) production in living organisms such as plants, animals, and fungi, where ROS exert different functions. ROS are critical for sexual development and cellular differentiation in fungi. In previous publications, two genes encoding thioredoxin and NADH-ubiquinone oxidoreductase involved in maintaining ROS balance were shown to be remarkably induced in a highly versus a weakly aggressive Verticillium dahliae isolate. This suggested a role of these genes in the virulence of this pathogen. NoxA (NADPH oxidase A) was identified in the V. dahliae genome. We compared in vitro expression of NoxA in highly and weakly aggressive isolates of V. dahliae after elicitation with extracts from different potato tissues. NoxA expression was induced more in the weakly than highly aggressive isolate in response to leaf and stem extracts. After inoculation of potato detached leaves with these two V. dahliae isolates, NoxA was drastically up-regulated in the highly versus the weakly aggressive isolate. We generated single gene disruption mutants for NoxA genes. noxa mutants had significantly reduced virulence, indicating important roles in V. dahliae pathogenesis on the potato. This is consistent with a significant reduction of cellophane penetration ability of the mutants compared to the wild type. However, the cell wall integrity was not impaired in the noxa mutants when compared with the wild type. The resistance of noxa mutants to oxidative stress were also similar to the wild type. Complementation of noxa mutants with a full length NoxA clones restored penetration and pathogenic ability of the fungus. Our data showed that NoxA is essential for both penetration peg formation and virulence in V. dahliae.


1998 ◽  
Vol 64 (5) ◽  
pp. 1805-1811 ◽  
Author(s):  
B. S. Rajagopal ◽  
Joseph DePonte ◽  
Mendel Tuchman ◽  
Michael H. Malamy

ABSTRACT The goal of this work was to construct Escherichia colistrains capable of enhanced arginine production. The arginine biosynthetic capacity of previously engineered E. colistrains with a derepressed arginine regulon was limited by the availability of endogenous ornithine (M. Tuchman, B. S. Rajagopal, M. T. McCann, and M. H. Malamy, Appl. Environ. Microbiol. 63:33–38, 1997). Ornithine biosynthesis is limited due to feedback inhibition by arginine of N-acetylglutamate synthetase (NAGS), the product of the argA gene and the first enzyme in the pathway of arginine biosynthesis in E. coli. To circumvent this inhibition, the argA genes from E. coli mutants with feedback-resistant (fbr) NAGS were cloned into plasmids that contain “arg boxes,” which titrate the ArgR repressor protein, with or without the E. coli carABgenes encoding carbamyl phosphate synthetase and the argIgene for ornithine transcarbamylase. The free arginine production rates of “arg-derepressed” E. coli cells overexpressing plasmid-encoded carAB, argI, and fbr argA genes were 3- to 15-fold higher than that of an equivalent system overexpressing feedback-sensitive wild-type (wt)argA. The expression system with fbr argAproduced 7- to 35-fold more arginine than a system overexpressingcarAB and argI genes on a plasmid in a strain with a wt argA gene on the chromosome. The arginine biosynthetic capacity of arg-derepressed DH5α strains with plasmids containing only the fbr argA gene was similar to that of cells with plasmids also containing the carABand argI genes. Plasmids containing wt or fbrargA were stably maintained under normal growth conditions for at least 18 generations. DNA sequencing identified different point mutations in each of the fbr argA mutants, specifically H15Y, Y19C, S54N, R58H, G287S, and Q432R.


2000 ◽  
Vol 350 (1) ◽  
pp. 313-319 ◽  
Author(s):  
Marek SKONECZNY ◽  
Joanna RYTKA

Saccharomyces cerevisiae genes related to respiration are typically controlled by oxygen and haem. Usually the regulation by these factors is co-ordinated; haem is indicated as the oxygen sensor. However, the responsiveness of peroxisome functions to these regulatory factors is poorly understood. The expression of CTA1, POX1 and PEX1 genes encoding the peroxisomal proteins catalase A, acyl-CoA oxidase and Pex1p peroxin respectively was studied under various conditions: in anaerobiosis, in the absence of haem and in respiratory incompetence caused by the lack of a mitochondrial genome (ρ0). The influence of haem deficiency or ρ0 on peroxisomal morphology was also investigated. Respiratory incompetence has no effect on the expression of CTA1 and POX1, whereas in the absence of haem their expression is markedly decreased. The synthesis of Pex1p is decreased in ρ0 cells and is decreased even more in haem-deficient cells. Nevertheless, peroxisomal morphology in both these types of cell does not differ significantly from the morphology of peroxisomes in wild-type cells. The down-regulating effect of anoxia on the expression of CTA1 and POX1 is even stronger than the effect of haem deficiency and is not reversed by the addition of exogenous haem or the presence of endogenous haem. Moreover, neither of these genes responds to the known haem-controlled transcriptional factor Hap1p. In contrast with the other two genes studied, PEX1 is up-regulated in anaerobiosis. The existence of one or more novel mechanisms of regulation of peroxisomal genes by haem and oxygen, different from those already known in S. cerevisiae, is postulated.


Sign in / Sign up

Export Citation Format

Share Document