scholarly journals Growth Retardation, Reduced Invasiveness, and Impaired Colistin-Mediated Cell Death Associated with Colistin Resistance Development in Acinetobacter baumannii

2013 ◽  
Vol 58 (2) ◽  
pp. 828-832 ◽  
Author(s):  
Spyros Pournaras ◽  
Aggeliki Poulou ◽  
Konstantina Dafopoulou ◽  
Yassine Nait Chabane ◽  
Ioulia Kristo ◽  
...  

ABSTRACTTwo colistin-susceptible/colistin-resistant (Cols/Colr) pairs ofAcinetobacter baumanniistrains assigned to international clone 2, which is prevalent worldwide, were sequentially recovered from two patients after prolonged colistin administration. Compared with the respective Colsisolates (Ab248 and Ab299, both having a colistin MIC of 0.5 μg/ml), both Colrisolates (Ab249 and Ab347, with colistin MICs of 128 and 32 μg/ml, respectively) significantly overexpressedpmrCABgenes, had single-amino-acid shifts in the PmrB protein, and exhibited significantly slower growth. The Colrisolate Ab347, tested by proteomic analysis in comparison with its Colscounterpart Ab299, underexpressed the proteins CsuA/B and C from thecsuoperon (which is necessary for biofilm formation). This isolate also underexpressed aconitase B and different enzymes involved in the oxidative stress response (KatE catalase, superoxide dismutase, and alkyl hydroperoxide reductase), suggesting a reduced response to reactive oxygen species (ROS) and, consequently, impaired colistin-mediated cell death through hydroxyl radical production. Colsisolates that were indistinguishable by macrorestriction analysis from Ab299 caused six sequential bloodstream infections, and isolates indistinguishable from Ab248 caused severe soft tissue infection, while Colrisolates indistinguishable from Ab347 and Ab249 were mainly colonizers. In particular, a Colsisolate identical to Ab299 was still invading the bloodstream 90 days after the colonization of this patient by Colrisolates. These observations indicate considerably lower invasiveness ofA. baumanniiclinical isolates following the development of colistin resistance.

2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Carly Ching ◽  
Brendan Yang ◽  
Chineme Onwubueke ◽  
David Lazinski ◽  
Andrew Camilli ◽  
...  

ABSTRACTAcinetobacter baumanniiis a Gram-negative opportunistic pathogen that is known to survive harsh environmental conditions and is a leading cause of hospital-acquired infections. Specifically, multicellular communities (known as biofilms) ofA. baumanniican withstand desiccation and survive on hospital surfaces and equipment. Biofilms are bacteria embedded in a self-produced extracellular matrix composed of proteins, sugars, and/or DNA. Bacteria in a biofilm are protected from environmental stresses, including antibiotics, which provides the bacteria with selective advantage for survival. Although some gene products are known to play roles in this developmental process inA. baumannii, mechanisms and signaling remain mostly unknown. Here, we find that Lon protease inA. baumanniiaffects biofilm development and has other important physiological roles, including motility and the cell envelope. Lon proteases are found in all domains of life, participating in regulatory processes and maintaining cellular homeostasis. These data reveal the importance of Lon protease in influencing keyA. baumanniiprocesses to survive stress and to maintain viability.IMPORTANCEAcinetobacter baumanniiis an opportunistic pathogen and is a leading cause of hospital-acquired infections.A. baumanniiis difficult to eradicate and to manage, because this bacterium is known to robustly survive desiccation and to quickly gain antibiotic resistance. We sought to investigate biofilm formation inA. baumannii, since much remains unknown about biofilm formation in this bacterium. Biofilms, which are multicellular communities of bacteria, are surface attached and difficult to eliminate from hospital equipment and implanted devices. Our research identifies multifaceted physiological roles for the conserved bacterial protease Lon inA. baumannii. These roles include biofilm formation, motility, and viability. This work broadly affects and expands understanding of the biology ofA. baumannii, which will permit us to find effective ways to eliminate the bacterium.


2018 ◽  
Vol 57 (3) ◽  
Author(s):  
Lisa M. Leung ◽  
Christi L. McElheny ◽  
Francesca M. Gardner ◽  
Courtney E. Chandler ◽  
Sarah L. Bowler ◽  
...  

ABSTRACT Acinetobacter baumannii is a prevalent nosocomial pathogen with a high incidence of multidrug resistance. Treatment of infections due to this organism with colistin, a last-resort antibiotic of the polymyxin class, can result in the emergence of colistin-resistant strains. Colistin resistance primarily occurs via modifications of the terminal phosphate moieties of lipopolysaccharide-derived lipid A, which reduces overall membrane electronegativity. These modifications are readily identified by mass spectrometry (MS). In this study, we prospectively collected Acinetobacter baumannii complex clinical isolates from a hospital system in Pennsylvania over a 3-year period. All isolates were evaluated for colistin resistance using standard MIC testing by both agar dilution and broth microdilution, as well as genospecies identification and lipid A profiling using MS analyses. Overall, an excellent correlation between colistin susceptibility and resistance, determined by MIC testing, and the presence of a lipid A modification, determined by MS, was observed with a sensitivity of 92.9% and a specificity of 94.0%. Additionally, glycolipid profiling was able to differentiate A. baumannii complex organisms based on their membrane lipids. With the growth of MS use in clinical laboratories, a reliable MS-based glycolipid phenotyping method that identifies colistin resistance in A. baumannii complex clinical isolates, as well as other Gram-negative organisms, represents an alternative or complementary approach to existing diagnostics.


2012 ◽  
Vol 56 (11) ◽  
pp. 5961-5970 ◽  
Author(s):  
Luísa C. S. Antunes ◽  
Francesco Imperi ◽  
Fabrizia Minandri ◽  
Paolo Visca

ABSTRACTMultidrug-resistantAcinetobacter baumanniiposes a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumanniichemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO3)3, the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58A. baumanniistrains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO3)3delayed the entry ofA. baumanniiinto the exponential phase and drastically reduced bacterial growth rates. Ga(NO3)3activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO3)3also protectedGalleria mellonellalarvae from lethalA. baumanniiinfection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO3)3inhibited the growth in human serum of 76% of the multidrug-resistantA. baumanniiisolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment ofA. baumanniibloodstream infections. Ga(NO3)3also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistantA. baumannii.


2015 ◽  
Vol 59 (8) ◽  
pp. 4817-4825 ◽  
Author(s):  
Xinlong He ◽  
Feng Lu ◽  
Fenglai Yuan ◽  
Donglin Jiang ◽  
Peng Zhao ◽  
...  

ABSTRACTChronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency ofAcinetobacter baumanniiand the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolatedA. baumanniistrains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designatedA. baumanniiABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI,adeB,adeG,adeJ,carO, andompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation ofadeGcorrelated with biofilm induction. The consistent upregulation ofadeGandabaIwas detected in A-III-typeA. baumanniiin response to levofloxacin and meropenem (1/8 to 1/2× the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused byA. baumannii. This study provides useful information for the development of antibiofilm strategies.


2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Pengyuan Xiu ◽  
Rui Liu ◽  
Dechao Zhang ◽  
Chaomin Sun

ABSTRACT Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote cellular aggregation without inducing cell death. These findings suggest that CLPs hold great promise as potential drug candidates targeting bacterial motility and biofilm formation with a low overall potential for triggering antibiotic resistance.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Sarah M. McLeod ◽  
Samir H. Moussa ◽  
Meredith A. Hackel ◽  
Alita A. Miller

ABSTRACT Acinetobacter baumannii-calcoaceticus complex (ABC) organisms cause severe infections that are difficult to treat due to preexisting antibiotic resistance. Sulbactam-durlobactam (formerly sulbactam-ETX2514) (SUL-DUR) is a β-lactam–β-lactamase inhibitor combination antibiotic designed to treat serious infections caused by ABC organisms, including multidrug-resistant (MDR) strains. The in vitro antibacterial activities of SUL-DUR and comparator agents were determined by broth microdilution against 1,722 clinical isolates of ABC organisms collected in 2016 and 2017 from 31 countries across Asia/South Pacific, Europe, Latin America, the Middle East, and North America. Over 50% of these isolates were resistant to carbapenems. Against this collection of global isolates, SUL-DUR had a MIC50/MIC90 of 1/2 μg/ml compared to a MIC50/MIC90 of 8/64 μg/ml for sulbactam alone. This level of activity was found to be consistent across organisms, regions, sources of infection, and subsets of resistance phenotypes, including MDR and extensively drug-resistant isolates. The SUL-DUR activity was superior to those of the tested comparators, with only colistin having similar potency. Whole-genome sequencing of the 39 isolates (2.3%) with a SUL-DUR MIC of >4 μg/ml revealed that these strains encoded either the metallo-β-lactamase NDM-1, which durlobactam does not inhibit, or single amino acid substitutions near the active site of penicillin binding protein 3 (PBP3), the primary target of sulbactam. In summary, SUL-DUR demonstrated potent antibacterial activity against recent, geographically diverse clinical isolates of ABC organisms, including MDR isolates.


2019 ◽  
Vol 63 (3) ◽  
Author(s):  
Stefanie Gerson ◽  
Jonathan W. Betts ◽  
Kai Lucaßen ◽  
Carolina Silva Nodari ◽  
Julia Wille ◽  
...  

ABSTRACT Colistin resistance in Acinetobacter baumannii is of great concern and is a threat to human health. In this study, we investigate the mechanisms of colistin resistance in four isogenic pairs of A. baumannii isolates displaying an increase in colistin MICs. A mutation in pmrB was detected in each colistin-resistant isolate, three of which were novel (A28V, I232T, and ΔL9-G12). Increased expression of pmrC was shown by semi-quantitative reverse transcription-PCR (qRT-PCR) for three colistin-resistant isolates, and the addition of phosphoethanolamine (PEtN) to lipid A by PmrC was revealed by mass spectrometry. Interestingly, PEtN addition was also observed in some colistin-susceptible isolates, indicating that this resistance mechanism might be strain specific and that other factors could contribute to colistin resistance. Furthermore, the introduction of pmrAB carrying the short amino acid deletion ΔL9-G12 into a pmrAB knockout strain resulted in increased pmrC expression and lipid A modification, but colistin MICs remained unchanged, further supporting the strain specificity of this colistin resistance mechanism. Of note, a mutation in the pmrC homologue eptA and a point mutation in ISAba1 upstream of eptA were associated with colistin resistance and increased eptA expression, which is a hitherto undescribed resistance mechanism. Moreover, no cost of fitness was observed for colistin-resistant isolates, while the virulence of these isolates was increased in a Galleria mellonella infection model. Although the mutations in pmrB were associated with colistin resistance, PEtN addition appears not to be the sole factor leading to colistin resistance, indicating that the mechanism of colistin resistance is far more complex than previously suspected and is potentially strain specific.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Jung Gi Min ◽  
Uriel J. Sanchez Rangel ◽  
Austin Franklin ◽  
Hiroki Oda ◽  
Zhen Wang ◽  
...  

ABSTRACT Chronic wounds are a prominent concern, accounting for $25 billion of health care costs annually. Biofilms have been implicated in delayed wound closure, but they are susceptible to developing antibiotic resistance and treatment options continue to be limited. A novel collagen-rich hydrogel derived from human extracellular matrix presents an avenue for treating chronic wounds by providing appropriate extracellular proteins for healing and promoting neovascularization. Using the hydrogel as a delivery system for localized secretion of a therapeutic dosage of antibiotics presents an attractive means of maximizing delivery while minimizing systemic side effects. We hypothesize that the hydrogel can provide controlled elution of antibiotics leading to inhibition of bacterial growth and disruption of biofilm formation. The rate of antibiotic elution from the collagen-rich hydrogel and the efficacy of biofilm disruption was assessed with Pseudomonas aeruginosa. Bacterial growth inhibition, biofilm disruption, and mammalian cell cytotoxicity were quantified using in vitro models. The antibiotic-loaded hydrogel showed sustained release of antibiotics for up to 24 h at therapeutic levels. The treatment inhibited bacterial growth and disrupted biofilm formation at multiple time points. The hydrogel was capable of accommodating various classes of antibiotics and did not result in cytotoxicity in mammalian fibroblasts or adipose stem cells. The antibiotic-loaded collagen-rich hydrogel is capable of controlled antibiotic release effective for bacteria cell death without native cell death. A human-derived hydrogel that is capable of eluting therapeutic levels of antibiotic is an exciting prospect in the field of chronic wound healing.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Hubertine M. E. Willems ◽  
Jeremy S. Stultz ◽  
Molly E. Coltrane ◽  
Jabez P. Fortwendel ◽  
Brian M. Peters

ABSTRACT Receipt of parenteral nutrition (PN) remains an independent risk factor for developing catheter-related bloodstream infections (CR-BSI) caused by fungi, including by the polymorphic fungus Candida albicans, which is notoriously adept at forming drug-resistant biofilm structures. Among a variety of macronutrients, PN solutions contain lipid emulsions to supply daily essential fats and are often delivered via central venous catheters (CVCs). Therefore, using an in vitro biofilm model system, we sought to determine whether various clinical lipid emulsions differentially impacted biofilm growth in C. albicans. We observed that the lipid emulsions Intralipid and Omegaven both stimulated C. albicans biofilm formation during growth in minimal medium or a macronutrient PN solution. Conversely, Smoflipid inhibited C. albicans biofilm formation by approximately 50%. Follow-up studies revealed that while Smoflipid did not impair C. albicans growth, it did significantly inhibit hypha formation and hyphal elongation. Moreover, growth inhibition could be recapitulated in Intralipid when supplemented with capric acid—a fatty acid present in Smoflipid but absent in Intralipid. Capric acid was also found to dose dependently inhibit C. albicans biofilm formation in PN solutions. This is the first study to directly compare different clinical lipid emulsions for their capacity to affect C. albicans biofilm growth. Results derived from this study necessitate further research regarding different lipid emulsions and rates of fungus-associated CR-BSIs.


Sign in / Sign up

Export Citation Format

Share Document