scholarly journals Association between Type AblaZGene Polymorphism and Cefazolin Inoculum Effect in Methicillin-Susceptible Staphylococcus aureus

2016 ◽  
Vol 60 (11) ◽  
pp. 6928-6932 ◽  
Author(s):  
Sun Hee Lee ◽  
Wan Beom Park ◽  
Shinwon Lee ◽  
Sohee Park ◽  
Shin Woo Kim ◽  
...  

ABSTRACTSome proportion of type AblaZgene-positive methicillin-susceptibleStaphylococcus aureusstrains exhibit the cefazolin inoculum effect (CIE). The type AblaZgene was divided into two groups by single nucleotide polymorphisms (SNPs) at Ser226Pro and Cys229Tyr. The median cefazolin MICs at a high inoculum concentration were 5.69 μg/ml for the Ser-Cys group and 40.32 μg/ml for the Pro-Tyr group (P= 0.01). The SNPs at codons 226 and 229 in the amino acid sequence encoded by theblaZgene were closely associated with the CIE.

2013 ◽  
Vol 57 (11) ◽  
pp. 5658-5664 ◽  
Author(s):  
Soo-Jin Yang ◽  
Nagendra N. Mishra ◽  
Aileen Rubio ◽  
Arnold S. Bayer

ABSTRACTSingle nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) have been commonly observed in daptomycin-resistant (DAPr)Staphylococcus aureusstrains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if suchmprFSNPs are causal in DAPrstrains or are merely a biomarker for this phenotype. In this study, we used an isogenic set ofS. aureusstrains: (i) Newman, (ii) its isogenic ΔmprFmutant, and (iii) several intransplasmid complementation constructs, expressing either a wild-type or point-mutated form of themprFORF cloned from two isogenic DAP-susceptible (DAPs)-DAPrstrain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprFstrain with singly point-mutatedmprFgenes (mprFS295LormprFT345A) revealed that (i) individual and distinct point mutations within themprFORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding toS. aureusby a charge repulsion mechanism. Thus, for these two DAPrstrains, the definedmprFSNPs appear to be causally related to this phenotype.


2015 ◽  
Vol 59 (6) ◽  
pp. 3585-3587 ◽  
Author(s):  
Tetsuo Yamaguchi ◽  
Shingo Suzuki ◽  
Sakiko Okamura ◽  
Yuri Miura ◽  
Ayaka Tsukimori ◽  
...  

ABSTRACTWe obtained a series of methicillin-resistantStaphylococcus aureusisolates, including both daptomycin-susceptible strain TD1 and daptomycin-resistant strain TD4, from a patient. We determined the complete genome sequences of TD1 and TD4 using next-generation sequencing, and only four single-nucleotide polymorphisms (SNPs) were identified, one each incapB(E58K),rpoB(H481Y),lytN(I16V), andmprF(V351E). We determined that these four SNPs were sufficient to cause the strains to develop daptomycin, vancomycin, and rifampin resistance.


2015 ◽  
Vol 59 (8) ◽  
pp. 4930-4937 ◽  
Author(s):  
Arnold S. Bayer ◽  
Nagendra N. Mishra ◽  
Liang Chen ◽  
Barry N. Kreiswirth ◽  
Aileen Rubio ◽  
...  

ABSTRACTMprF is responsible for the lysinylation of phosphatidylglycerol (PG) to synthesize the positively charged phospholipid (PL) species, lysyl-PG (L-PG). It has been proposed that the single-nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) are associated with a gain-in-function phenotype in terms of daptomycin resistance inStaphylococcus aureus. (Note that although the official term is daptomycin nonsusceptibility, we use the term daptomycin resistance in this paper for ease of presentation.) Using 22 daptomycin-susceptible (DAPs)/daptomycin-resistant (DAPr) clinical methicillin-resistantS. aureus(MRSA) strain pairs, we assessed (i) the frequencies and distribution of putativemprFgain-in-function SNPs, (ii) the relationships of the SNPs to both daptomycin resistance and cross-resistance to the prototypical endovascular host defense peptide (HDP) thrombin-induced platelet microbicidal protein (tPMP), and (iii) the impact ofmprFSNPs on positive surface charge phenotype and modifications of membrane PL profiles. Most of themprFSNPs identified in our DAPrstrains were clustered within the two MprF loci, (i) the central bifunctional domain and (ii) the C-terminal synthase domain. Moreover, we were able to correlate the presence and location ofmprFSNPs in DAPrstrains with HDP cross-resistance, positive surface charge, and L-PG profiles. Although DAPrstrains withmprFSNPs in the bifunctional domain showed higher resistance to tPMPs than DAPrstrains with SNPs in the synthase domain, this relationship was not observed in positive surface charge assays. These results demonstrated that both charge-mediated and -unrelated mechanisms are involved in DAP resistance and HDP cross-resistance inS. aureus.


PLoS ONE ◽  
2011 ◽  
Vol 6 (4) ◽  
pp. e18428 ◽  
Author(s):  
Xudong Liang ◽  
Jeffrey W. Hall ◽  
Junshu Yang ◽  
Meiying Yan ◽  
Katherine Doll ◽  
...  

2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Marva Seifert ◽  
Edmund Capparelli ◽  
Donald G. Catanzaro ◽  
Timothy C. Rodwell

ABSTRACT Clinical phenotypic fluoroquinolone susceptibility testing of Mycobacterium tuberculosis is currently based on M. tuberculosis growth at a single critical concentration, which provides limited information for a nuanced clinical response. We propose using specific resistance-conferring M. tuberculosis mutations in gyrA together with population pharmacokinetic and pharmacodynamic modeling as a novel tool to better inform fluoroquinolone treatment decisions. We sequenced the gyrA resistance-determining region of 138 clinical M. tuberculosis isolates collected from India, Moldova, Philippines, and South Africa and then determined each strain’s MIC against ofloxacin, moxifloxacin, levofloxacin, and gatifloxacin. Strains with specific gyrA single-nucleotide polymorphisms (SNPs) were grouped into high or low drug-specific resistance categories based on their empirically measured MICs. Published population pharmacokinetic models were then used to explore the pharmacokinetics and pharmacodynamics of each fluoroquinolone relative to the empirical MIC distribution for each resistance category to make predictions about the likelihood of patients achieving defined therapeutic targets. In patients infected with M. tuberculosis isolates containing SNPs associated with a fluoroquinolone-specific low-level increase in MIC, models suggest increased fluoroquinolone dosing improved the probability of achieving therapeutic targets for gatifloxacin and moxifloxacin but not for levofloxacin and ofloxacin. In contrast, among patients with isolates harboring SNPs associated with a high-level increase in MIC, increased dosing of levofloxacin, moxifloxacin, gatifloxacin, or ofloxacin did not meaningfully improve the probability of therapeutic target attainment. We demonstrated that quantifiable fluoroquinolone drug resistance phenotypes could be predicted from rapidly detectable gyrA SNPs and used to support dosing decisions based on the likelihood of patients reaching therapeutic targets. Our findings provide further supporting evidence for the moxifloxacin clinical breakpoint recently established by the World Health Organization.


Author(s):  
Zahraa Isam ◽  
Rabab Omran ◽  
Ammad Hassan Mahmood

  Objective: The calcium-sensing receptor (CASR) is a G-protein-coupled receptor that is mainly expressed in the parathyroid and the kidneys where it regulates parathyroid hormone secretion and renal tubular calcium reabsorption. Inactivating and activating CASR gene due to mutations severally caused hypercalcemia or hypocalcemia disorders. The aim of the study was to investigate the risk factor of CASR rs1801725 (Ala986Ser) patients with renal disease.Method: The blood samples were collected from 100 patients and divided into two groups, each one containing 50 samples; chronic kidney disease and end-stage renal disease, who admitted Merjan Teaching Hospital in Babylon Province, Iraq, from February to July 2016. In addition, healthy persons as a control group (50 samples). Genotyping of CASR single-nucleotide polymorphisms (SNP) was performed using a polymerase chain reaction technique, followed by single-strand conformation polymorphism. Accordingly, these DNA polymorphisms were confirmed using DNA sequencing.Results: The conformational haplotypes of CASR, exon7 NCBI Primer3plus reference were obtained in three patterns, including two, three, and four bands, due to the presence SNPs within the studied region. These SNPs leads to change three amino acid residues of CASR, including amino acid substitutions were Ala 128→ Ser 128, Leu 155→Tye 155, and Leu 156→ Ser 156 that may affect or modified the tertiary structure of the receptor, subsequently the function like the affinity to calcium ion may be effected.Conclusion: These results suggest that the variants of CASR SNP, namely, rs1801725 might be involved in susceptibility to kidney stone disease.


2015 ◽  
Vol 60 (1) ◽  
pp. 387-392 ◽  
Author(s):  
Faezeh Mohammadi ◽  
Seyed Jamal Hashemi ◽  
Jan Zoll ◽  
Willem J. G. Melchers ◽  
Haleh Rafati ◽  
...  

ABSTRACTWe employed an endpoint genotyping method to update the prevalence rate of positivity for the TR34/L98H mutation (a 34-bp tandem repeat mutation in the promoter region of thecyp51Agene in combination with a substitution at codon L98) and the TR46/Y121F/T289A mutation (a 46-bp tandem repeat mutation in the promoter region of thecyp51Agene in combination with substitutions at codons Y121 and T289) among clinicalAspergillus fumigatusisolates obtained from different regions of Iran over a recent 5-year period (2010 to 2014). The antifungal activities of itraconazole, voriconazole, and posaconazole against 172 clinicalA. fumigatusisolates were investigated using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution method. For the isolates with an azole resistance phenotype, thecyp51Agene and its promoter were amplified and sequenced. In addition, using a LightCycler 480 real-time PCR system, a novel endpoint genotyping analysis method targeting single-nucleotide polymorphisms was evaluated to detect the L98H and Y121F mutations in thecyp51Agene of all isolates. Of the 172A. fumigatusisolates tested, the MIC values of itraconazole (≥16 mg/liter) and voriconazole (>4 mg/liter) were high for 6 (3.5%). Quantitative analysis of single-nucleotide polymorphisms showed the TR34/L98H mutation in thecyp51Agenes of six isolates. No isolates harboring the TR46/Y121F/T289A mutation were detected. DNA sequencing of thecyp51Agene confirmed the results of the novel endpoint genotyping method. By microsatellite typing, all of the azole-resistant isolates had genotypes different from those previously recovered from Iran and from the Dutch TR34/L98H controls. In conclusion, there was not a significant increase in the prevalence of azole-resistantA. fumigatusisolates harboring the TR34/L98H resistance mechanism among isolates recovered over a recent 5-year period (2010 to 2014) in Iran. A quantitative assay detecting a single-nucleotide polymorphism in thecyp51Agene ofA. fumigatusis a reliable tool for the rapid screening and monitoring of TR34/L98H- and TR46/Y121F/T289A-positive isolates and can easily be incorporated into clinical mycology algorithms.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Kavindra V. Singh ◽  
Truc T. Tran ◽  
Esteban C. Nannini ◽  
Vincent H. Tam ◽  
Cesar A. Arias ◽  
...  

ABSTRACT Certain Staphylococcus aureus strains exhibit an inoculum effect (InE) with cefazolin (CFZ) that has been associated with therapeutic failures in high-inoculum infections. We assessed the in vitro activities of ceftaroline (CPT), CFZ, and nafcillin (NAF) against 17 type A β-lactamase (βla)-producing, methicillin-susceptible S. aureus (MSSA) strains, including the previously reported TX0117, which exhibits the CFZ InE, and its βla-cured derivative, TX0117c. Additionally, we determined the pharmacokinetics of CPT in rats after single intramuscular doses of 20 and 40 mg/kg of body weight and evaluated the activities of CPT (40 mg/kg every 8 h [q8h]), CFZ, and NAF against TX0117 and TX0117c in a rat model of infective endocarditis. No InE was observed for CPT or NAF, whereas a marked InE was detected for CFZ (MIC, 8 to ≥128 μg/ml). CPT and NAF treatment against TX0117 resulted in mean bacterial counts of 2.3 and 2.1 log10 CFU/g in vegetations, respectively, compared to a mean of 5.9 log10 CFU/g in the CFZ-treated group (CPT and NAF versus CFZ, P = 0.001; CPT versus NAF, P = 0.9830). Both CFZ and CPT were efficacious against the βla-cured derivative, TX0117c, compared to time zero (t 0) (P = <0.0001 and 0.0015, respectively). Our data reiterate the in vivo consequences of the CFZ InE and show that CPT is not affected by this phenomenon. CPT might be considered for high-inoculum infections caused by MSSA exhibiting the CFZ InE.


2007 ◽  
Vol 05 (06) ◽  
pp. 1297-1318 ◽  
Author(s):  
CATHERINE L. WORTH ◽  
G. RICHARD J. BICKERTON ◽  
ADRIAN SCHREYER ◽  
JULIA R. FORMAN ◽  
TAMMY M. K. CHENG ◽  
...  

The prediction of the effects of nonsynonymous single nucleotide polymorphisms (nsSNPs) on function depends critically on exploiting all information available on the three-dimensional structures of proteins. We describe software and databases for the analysis of nsSNPs that allow a user to move from SNP to sequence to structure to function. In both structure prediction and the analysis of the effects of nsSNPs, we exploit information about protein evolution, in particular, that derived from investigations on the relation of sequence to structure gained from the study of amino acid substitutions in divergent evolution. The techniques developed in our laboratory have allowed fast and automated sequence-structure homology recognition to identify templates and to perform comparative modeling; as well as simple, robust, and generally applicable algorithms to assess the likely impact of amino acid substitutions on structure and interactions. We describe our strategy for approaching the relationship between SNPs and disease, and the results of benchmarking our approach — human proteins of known structure and recognized mutation.


2017 ◽  
Vol 83 (14) ◽  
Author(s):  
Amanda M. Williams-Rhaesa ◽  
Farris L. Poole ◽  
Jessica T. Dinsmore ◽  
Gina L. Lipscomb ◽  
Gabriel M. Rubinstein ◽  
...  

ABSTRACT Caldicellulosiruptor bescii is the most thermophilic cellulose degrader known and is of great interest because of its ability to degrade nonpretreated plant biomass. For biotechnological applications, an efficient genetic system is required to engineer it to convert plant biomass into desired products. To date, two different genetically tractable lineages of C. bescii strains have been generated. The first (JWCB005) is based on a random deletion within the pyrimidine biosynthesis genes pyrFA, and the second (MACB1018) is based on the targeted deletion of pyrE, making use of a kanamycin resistance marker. Importantly, an active insertion element, ISCbe4, was discovered in C. bescii when it disrupted the gene for lactate dehydrogenase (ldh) in strain JWCB018, constructed in the JWCB005 background. Additional instances of ISCbe4 movement in other strains of this lineage are presented herein. These observations raise concerns about the genetic stability of such strains and their use as metabolic engineering platforms. In order to investigate genome stability in engineered strains of C. bescii from the two lineages, genome sequencing and Southern blot analyses were performed. The evidence presented shows a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 elements within the genome of JWCB005, leading to massive genome rearrangements in its daughter strain, JWCB018. Such dramatic effects were not evident in the newer MACB1018 lineage, indicating that JWCB005 and its daughter strains are not suitable for metabolic engineering purposes in C. bescii. Furthermore, a facile approach for assessing genomic stability in C. bescii has been established. IMPORTANCE Caldicellulosiruptor bescii is a cellulolytic extremely thermophilic bacterium of great interest for metabolic engineering efforts geared toward lignocellulosic biofuel and bio-based chemical production. Genetic technology in C. bescii has led to the development of two uracil auxotrophic genetic background strains for metabolic engineering. We show that strains derived from the genetic background containing a random deletion in uracil biosynthesis genes (pyrFA) have a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 insertion elements in their genomes compared to the wild type. At least one daughter strain of this lineage also contains large-scale genome rearrangements that are flanked by these ISCbe4 elements. In contrast, strains developed from the second background strain developed using a targeted deletion strategy of the uracil biosynthetic gene pyrE have a stable genome structure, making them preferable for future metabolic engineering studies.


Sign in / Sign up

Export Citation Format

Share Document