scholarly journals Tigecycline Does Not Prolong Corrected QT Intervals in Healthy Subjects

2013 ◽  
Vol 57 (4) ◽  
pp. 1895-1901 ◽  
Author(s):  
Joan M. Korth-Bradley ◽  
Paul C. McGovern ◽  
Joanne Salageanu ◽  
Kyle Matschke ◽  
Anna Plotka ◽  
...  

ABSTRACTWe evaluated the effect of tigecycline (50-mg and 200-mg doses) on corrected QT (QTc) intervals and assessed safety and tolerability in a randomized, placebo-controlled, four-period crossover study of 48 (44 male) healthy volunteers aged 22 to 53 years. Fed subjects received tigecycline (50 mg or 200 mg) or placebo in a blinded fashion or an open-label oral dose of moxifloxacin (400 mg) after 1 liter of intravenous fluid. Serial electrocardiograms were recorded before, and for 96 h after, dosing. Blood samples for tigecycline pharmacokinetics were collected after each recording. QTc intervals were corrected using Fridericia's correction (QTcF). Pharmacokinetic parameters were calculated using noncompartmental methods with potential relationships examined using linear mixed-effects modeling. Adverse events were recorded. The upper limits of the 90% confidence interval for the mean difference between both tigecycline doses and placebo for all time-matched QTcF interval changes from baseline were <5 ms. The tigecycline concentrations initially declined rapidly and then more slowly. In the group given 50 mg of tigecycline, the pharmacokinetic parameters and means were as follows: maximum concentration of drug in serum (Cmax), 432 ng/ml; area under the concentration-time curve from time zero extrapolated to infinity (AUC0–∞), 2,366 ng · h/ml; clearance (CL), 21.1 liters/h; volume of distribution at steady state (Vss), 610 liters; and terminal half-life (t1/2), 22.1 h. Proportional or similar values were found for the group given 200 mg of tigecycline. Linear mixed-effects modeling failed to show an effect on QTcF values by tigecycline concentrations (P= 0.755). Tigecycline does not prolong the QTc interval in healthy subjects. This study has been registered at ClinicalTrials.gov under registration no. NCT01287793.

1999 ◽  
Vol 43 (5) ◽  
pp. 1152-1155 ◽  
Author(s):  
Kevin W. Garey ◽  
Charles A. Peloquin ◽  
Paul G. Godo ◽  
Anne N. Nafziger ◽  
Guy W. Amsden

ABSTRACT This randomized, open-label, crossover study was conducted to investigate whether the coadministration of zafirlukast would affect the pharmacokinetics of azithromycin, clarithromycin, or 14-hydroxyclarithromycin (14-OHC). Twelve healthy subjects (six males and six females) received single 500-mg doses of azithromycin and clarithromycin with and without zafirlukast given to a steady-state concentration. Blood was collected prior to all macrolide doses and for 3 and 10 days after each clarithromycin and azithromycin dose, respectively. Serum was assayed for azithromycin, clarithromycin, and 14-OHC concentrations by validated high-performance liquid chromatography assay systems. Data analyses were done by noncompartmental and nonparametric methods. Analysis of the patients indicated that the addition of steady-state concentrations of zafirlukast did not significantly alter the pharmacokinetic parameters of or overall exposure (based on the area under the concentration-time curve) to azithromycin, clarithromycin, and 14-OHC. While zafirlukast is a known inhibitor of CYP3A4, it does not appear to exert a clinically or statistically significant pharmacokinetic effect on azithromycin, clarithromycin, or 14-OHC.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
I. Molina ◽  
F. Salvador ◽  
A. Sánchez-Montalvá ◽  
M. A. Artaza ◽  
R. Moreno ◽  
...  

ABSTRACT Despite its toxicity and low efficacy in the chronic phase, benznidazole is the drug of choice in Chagas disease. Scarce information about pharmacokinetics and pharmacodynamics of benznidazole has been published. We performed a phase I, open-label, nonrandomized pharmacokinetic study of benznidazole (Abarax) conducted with 8 healthy adult volunteers at the Infectious Diseases Department of the Vall d'Hebron University Hospital (Barcelona, Spain). The separation and detection of benznidazole were performed on a Waters Acquity ultraperformance liquid chromatography system (UPLC) coupled with a Waters Xevo TQ MS triple quadrupole mass spectrometer. The pharmacokinetic parameters were calculated based on a noncompartmental body model using Phoenix WinNonlin version 6.3 software. Furthermore, computational simulations were calculated for the multiple-dose administration at two dose regimens: 100 mg of benznidazole administered every 8 h and 150 mg of benznidazole administered every 12 h. After benznidazole administration, the median area under the concentration-time curve from time zero to time t (AUC0–t ) and extrapolated to infinity (AUC0–∞) were about 46.4 μg · h/ml and 48.4 μg · h/ml, respectively. Plasma benznidazole concentrations peaked at 3.5 h, with maximal concentrations of 2.2 μg/ml, and benznidazole exhibited a terminal half-life of 12.1 h. The median maximum concentration (C max) of benznidazole was lower in men than in women (1.6 versus 2.9 μg/ml), and median volume of distribution (V) as a function of bioavailability (F) was higher in men than in women (125.9 versus 88.6 liters). In conclusion, dose regimens (150 mg/12 h or 100 mg/8 h) reached a steady-state range concentration above of the minimum experimental therapeutic dose. Sex differences in the benznidazole pharmacokinetics were observed; mainly, men had lower C max and higher V/F than women.


Bioanalysis ◽  
2019 ◽  
Vol 11 (14) ◽  
pp. 1321-1336 ◽  
Author(s):  
Sara S Mourad ◽  
Eman I El-Kimary ◽  
Magda A Barary ◽  
Dalia A Hamdy

Aim: Assessment of pharmacokinetic interaction between linagliptin (LNG) and tadalafil (TDL) in healthy males. Methods: First, a novel LC–MS method was developed; second, a Phase IV, open-label, cross-over study was performed. Volunteers took single 20-mg TDL dose on day 1 followed by wash out period of 2 weeks then multiple oral dosing of 5-mg/day LNG for 13 days. On day 13, volunteers were co-administered 20-mg TDL. Results: LNG and TDL single doses did not affect QTc interval. Smoking did not alter pharmacokinetics/pharmacodynamics of LNG and TDL. Co-administration of LNG with TDL resulted in TDL longer time to reach maximum plasma concentration (Tmax), decreased oral clearance (Cl/F) and oral volume of distribution (Vd/F), increased its maximum plasma concentration (Cmax), area under concentration-time curve (AUC), muscle pain and QTc prolongation. Conclusion: LNG and TDL co-administration warrants monitoring and/or TDL dose adjustment.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
E. Wenzler ◽  
E. J. Ellis-Grosse ◽  
K. A. Rodvold

ABSTRACT The pharmacokinetics, safety, and tolerability of intravenous (i.v.) fosfomycin disodium (ZTI-01) and oral fosfomycin tromethamine were evaluated after a single dose in 28 healthy adult subjects. Subjects received a single 1-h i.v. infusion of 1 g and 8 g fosfomycin disodium and a single dose of 3 g oral fosfomycin tromethamine in a phase I, randomized, open-label, three-period crossover study. Serial blood and urine samples were collected before and up to 48 h after dosing. The mean pharmacokinetic parameters ± standard deviations of fosfomycin in plasma after 1 g and 8 g i.v., respectively, were the following: maximum clearance of drug in serum (C max), 44.3 ± 7.6 and 370 ± 61.9 μg/ml; time to maximum concentration of drug in serum (T max), 1.1 ± 0.05 and 1.08 ± 0.01 h; volume of distribution (V), 29.7 ± 5.7 and 31.5 ± 10.4 liters; clearance (CL), 8.7 ± 1.7 and 7.8 ± 1.4 liters/h; renal clearance (CLR), 6.6 ± 1.9 and 6.3 ± 1.6 liters/h; area under the concentration-time curve from 0 to infinity (AUC0–∞), 120 ± 28.5 and 1,060 ± 192 μg·h/ml; and half-life (t 1/2), 2.4 ± 0.4 and 2.8 ± 0.6 h. After oral administration, the parameters were the following: C max, 26.8 ± 6.4 μg/ml; T max, 2.25 ± 0.4 h; V/F, 204 ± 70.7 liters; CL/F, 17 ± 4.7 liters/h; CLR, 6.5 ± 1.8 liters/h; AUC0–∞, 191 ± 57.6 μg · h/ml; and t 1/2, 9.04 ± 4.5 h. The percent relative bioavailability of orally administered fosfomycin was 52.8% in relation to the 1-g i.v. dose. Approximately 74% and 80% of the 1-g and 8-g i.v. doses were excreted unchanged in the urine by 48 h compared to 37% after oral administration, with the majority of this excretion occurring by 12 h regardless of dosage form. No new safety concerns were identified during this study. The results of this study support further investigation of i.v. fosfomycin in the target patient population, including patients with complicated urinary tract infections and pyelonephritis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Annewil van Saet ◽  
Gerdien A. Zeilmaker-Roest ◽  
Kevin M. Veen ◽  
Saskia N. de Wildt ◽  
Fritz Sorgel ◽  
...  

Introduction: To our knowledge, methylprednisolone pharmacokinetics and plasma concentrations have not been comprehensively investigated in children with congenital heart disease undergoing cardiac surgery with cardiopulmonary bypass. It is unknown whether there is a significant influence of cardiopulmonary bypass on the plasma concentrations of methylprednisolone and whether this may be an explanation for the limited reported efficacy of steroid administration in cardiac surgery with cardiopulmonary bypass.Methods: The study was registered in the Dutch Trial Register (NTR3579; https://www.trialregister.nl/trial/3428). Methylprednisolone 30 mg/kg was administered as an intravenous bolus after induction of anesthesia. Methylprednisolone concentration was measured with liquid chromatography tandem mass spectrometry and analyzed using linear mixed-effects modeling.Results: Thirty-nine patients were included in the study, of which three were excluded. There was an acute decrease in observed methylprednisolone plasma concentration on initiation of cardiopulmonary bypass (median = 26.8%, range = 13.9–48.14%, p &lt; 0.001). We found a lower intercept (p = 0.02), as well as a less steep slope of the model predicted methylprednisolone concentration vs. time curve for neonates (p = 0.048). A lower intercept (p = 0.01) and a less steep slope (p = 0.0024) if the volume of cell saver blood processed was larger than 91 ml/kg were also found.Discussion: We report similar methylprednisolone plasma concentrations as earlier studies performed in children undergoing cardiopulmonary bypass, and we confirmed the large interindividual variability in achieved methylprednisolone plasma concentrations with weight-based methylprednisolone administration. A larger volume of distribution and a lower clearance of methylprednisolone for neonates were suggested. The half-life of methylprednisolone in our study was calculated to be longer than 6 h for neonates, 4.7 h for infants, 3.6 h for preschool children and 4.7 h for school children. The possible influence of treatment of pulmonary hypertension with sildenafil and temperature needs to be investigated further.


2014 ◽  
Vol 989-994 ◽  
pp. 1041-1043
Author(s):  
Ping Liu ◽  
Liang Sun ◽  
Jian Zhang ◽  
Rui Chen Guo

In this single-center, randomized, open-label, 3-way crossover study, subjects received each of the following: a single dose of Tramadol Hydrochloride Injection (THI) 35 mg, a single dose of Promethazine Hydrochloride Injection (PHI) 45 mg, and single dose of Compound Tramadol Hydrochloride Injection (CTHI) 80mg. Blood was collected and plasma was analyzed for the pharmacokinetic parameters (maximum plasma concentration [Cmax], time to Cmax [Tmax], area under the plasma concentration-time curve, plasma elimination half-life, clearance, and apparent volume of distribution) of Tramadol and Promethazine. In general, several pharmacokinetic interactions were observed between Tramadol and Promethazine in the present study.


2010 ◽  
Vol 55 (1) ◽  
pp. 326-330 ◽  
Author(s):  
José Moltó ◽  
Marta Valle ◽  
Cristina Miranda ◽  
Samandhy Cedeño ◽  
Eugenia Negredo ◽  
...  

ABSTRACTThe aim of this open-label, fixed-sequence study was to investigate the potential ofEchinacea purpurea, a commonly used botanical supplement, to interact with the boosted protease inhibitor darunavir-ritonavir. Fifteen HIV-infected patients receiving antiretroviral therapy including darunavir-ritonavir (600/100 mg twice daily) for at least 4 weeks were included.E. purpurearoot extract capsules were added to the antiretroviral treatment (500 mg every 6 h) from days 1 to 14. Darunavir concentrations in plasma were determined by high-performance liquid chromatography immediately before and 1, 2, 4, 6, 8, 10, and 12 h after a morning dose of darunavir-ritonavir on days 0 (darunavir-ritonavir) and 14 (darunavir-ritonavir plus echinacea). Individual darunavir pharmacokinetic parameters were calculated by noncompartmental analysis and compared between days 0 and 14 with the geometric mean ratio (GMR) and its 90% confidence interval (CI). The median age was 49 (range, 43 to 67) years, and the body mass index was 24.2 (range, 18.7 to 27.5) kg/m2. Echinacea was well tolerated, and all participants completed the study. The GMR for darunavir coadministered with echinacea relative to that for darunavir alone was 0.84 (90% CI, 0.63-1.12) for the concentration at the end of the dosing interval, 0.90 (90% CI, 0.74-1.10) for the area under the concentration-time curve from 0 to 12 h, and 0.98 (90% CI, 0.82-1.16) for the maximum concentration. In summary, coadministration ofE. purpureawith darunavir-ritonavir was safe and well tolerated. Individual patients did show a decrease in darunavir concentrations, although this did not affect the overall darunavir or ritonavir pharmacokinetics. Although no dose adjustment is required, monitoring darunavir concentrations on an individual basis may give reassurance in this setting.


1997 ◽  
Vol 41 (5) ◽  
pp. 982-986 ◽  
Author(s):  
T P Kanyok ◽  
A D Killian ◽  
K A Rodvold ◽  
L H Danziger

Aminosidine is an older, broad-spectrum aminoglycoside antibiotic that has been shown to be effective in in vitro and animal models against multiple-drug-resistant tuberculosis and the Mycobacterium avium complex. The objective of this randomized, parallel trial was to characterize the single-dose pharmacokinetics of aminosidine sulfate in healthy subjects (eight males, eight females). Sixteen adults (mean [+/- standard deviation] age, 27.6 +/- 5.6 years) were randomly allocated to receive a single, intramuscular aminosidine sulfate injection at a dose of 12 or 15 mg/kg of body weight. Serial plasma and urine samples were collected over a 24-h period and used to determine aminosidine concentrations by high-performance liquid chromatographic assay. A one-compartment model with first-order input, first-order output, and a lag time (Tlag) and with a weighting factor of 1/y2 best described the data. Compartmental and noncompartmental pharmacokinetic parameters were estimated with the microcomputer program WinNonlin. One subject was not included (15-mg/kg group) because of the lack of sampling time data. On average, subjects attained peak concentrations of 22.4 +/- 3.2 microg/ml at 1.34 +/- 0.45 h. All subjects had plasma aminosidine concentrations below 2 microg/ml at 12 h, and all but two subjects (one in each dosing group) had undetectable plasma aminosidine concentrations at 24 h. The dose-adjusted area under the concentration-time curve from 0 h to infinity of aminosidine was identical for the 12- and 15-mg/kg groups (9.29 +/- 1.5 versus 9.29 +/- 2.2 microg x h/ml per mg/kg; P = 0.998). Similarly, no significant differences (P > 0.05) were observed between dosing groups for peak aminosidine concentration in plasma, time to peak aminosidine concentration in plasma, Tlag, apparent clearance, renal clearance, elimination rate constant, and elimination half-life. A significant difference was observed for the volume of distribution (0.35 versus 0.41 liters/kg; P = 0.037) between the 12 and 15 mg/kg dosing groups. Now that comparable pharmacokinetic profiles between dosing groups have been demonstrated, therapeutic equivalency testing via in vitro pharmacokinetic and pharmacodynamic modelling and randomized clinical trials in humans should be conducted.


2007 ◽  
Vol 51 (8) ◽  
pp. 2982-2984 ◽  
Author(s):  
Mary B. Wire ◽  
Charles H. Ballow ◽  
Julie Borland ◽  
Mark J. Shelton ◽  
Yu Lou ◽  
...  

ABSTRACT Plasma ketoconazole (KETO), amprenavir (APV), and ritonavir (RTV) pharmacokinetics were evaluated in 15 healthy subjects after being treated with KETO at 200 mg once daily (QD), fosamprenavir (FPV)/RTV at 700/100 mg twice daily (BID), and then KETO at 200 mg QD plus FPV/RTV at 700/100 mg BID in this open-label study. The KETO area under the concentration-time curve at steady state was increased 2.69-fold with FPV/RTV. APV exposure was unchanged, and RTV exposure was slightly increased.


1996 ◽  
Vol 40 (11) ◽  
pp. 2577-2581 ◽  
Author(s):  
D R Luke ◽  
G Foulds ◽  
S F Cohen ◽  
B Levy

To date, the clinical pharmacology of large intravenous doses of azithromycin has not been described. In the present study, single 2-h intravenous infusions of 1, 2, and 4 g of azithromycin were administered to three parallel groups (in each group, six received active drug and two received placebo) of healthy male subjects. Toleration (assessed by scores of subject-administered visual analog scale tests spanning 0 [good] to 10 [poor]), safety, pharmacokinetics, and serum motilin levels were monitored for up to 240 h after the start of each intravenous infusion. Mean nausea scores of 0.0, 0.0, 1.0, and 0.5 and abdominal cramping scores of 0.0, 0.0, 0.4, and 0.4 for 12-h periods after doses of 0, 1, 2, and 4 g of azithromycin, respectively, suggested that azithromycin was well tolerated. Because of the standardized 1-mg/ml infusates, all subjects in the 4-g dosing group complained of an urgent need to urinate. There were no consistent trends in endogenous motilin levels throughout the study. The maximum concentration of azithromycin in serum (10 micrograms/ml after a 4-g dose) and the area under the concentration-time curve (82 micrograms.h/ml after a 4-g dose) were dose related. The mean pharmacokinetic parameters were an elimination half-life of 69 h, total systemic clearance of 10 ml/min/kg, and a volume of distribution at steady state of 33.3 liters/kg. The pharmacokinetic results suggest that the long half-life of azithromycin is due to extensive uptake and slow release of the drug from tissues rather than an inability to clear the drug. Single intravenous doses of up to 4 g of azithromycin in healthy subjects are generally well tolerated, and quantifiable concentrations may persist in serum for 10 days or more.


Sign in / Sign up

Export Citation Format

Share Document