scholarly journals Burkholderia ubonensis high-level tetracycline resistance is due to efflux pump synergy involving a novel TetA(64) resistance determinant

2020 ◽  
pp. AAC.01767-20
Author(s):  
Nawarat Somprasong ◽  
Carina M. Hall ◽  
Jessica R. Webb ◽  
Jason W. Sahl ◽  
David M. Wagner ◽  
...  

Burkholderia ubonensis, a non-pathogenic soil bacterium belonging to the Burkholderia cepacia complex (Bcc), is highly resistant to some clinically significant antibiotics. The concern is that B. ubonensis may serve as a resistance reservoir for Bcc or B. pseudomallei complex (Bpc) organisms that are opportunistic human pathogens. Using a B. ubonensis strain highly resistant to tetracycline (MIC ≥256 μg/ml), we identified and characterized tetA(64) that encodes a novel tetracycline-specific efflux pump of the major facilitator superfamily. TetA(64) and associated TetR(64) regulator expression is induced by tetracyclines. Although TetA(64) is the primary tetracycline and doxycycline resistance determinant, maximum tetracycline and doxycycline resistance requires synergy between TetA(64) and the non-specific AmrAB-OprA resistance nodulation cell division efflux pump. TetA(64) does not efflux minocycline, tigecycline and eravacycline. Comprehensive screening of genome sequences showed that TetA(64) is unequally distributed in the Bcc and absent from the Bpc. It is present in some major cystic fibrosis pathogens, like B. cenocepacia, but absent from others like B. multivorans. The tetR(64)-tetA(64) genes are located in a region of chromosome 1 that is highly conserved in Burkholderia. Because there is no evidence for transposition, the tetR(64)-tetA(64) genes may have been acquired by homologous recombination after horizontal gene transfer. Although Burkholderia species contain a resident multi-component efflux pump that allows them to respond to tetracyclines up to a certain concentration, the acquisition of the single-component TetA(64) by some species likely provides the synergy that these bacteria need to defend against high tetracycline concentrations in niche environments.

2007 ◽  
Vol 51 (7) ◽  
pp. 2464-2469 ◽  
Author(s):  
Bruno Périchon ◽  
Patrice Courvalin ◽  
Marc Galimand

ABSTRACT Plasmid pIP1206 was detected in Escherichia coli strain 1540 during the screening of clinical isolates of Enterobacteriaceae for high-level resistance to aminoglycosides. The sequence of this IncFI conjugative plasmid of ca. 100 kb was partially determined. pIP1206 carried the rmtB gene for a ribosome methyltransferase that was shown to modify the N7 position of nucleotide G1405, located in the A site of 16S rRNA. It also contained the qepA (quinolone efflux pump) gene that encodes a 14-transmembrane-segment putative efflux pump belonging to the major facilitator superfamily of proton-dependent transporters. Disruption of membrane proton potential by the efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone in a transconjugant harboring the qepA gene resulted in elevation of norfloxacin accumulation. The transporter conferred resistance to the hydrophilic quinolones norfloxacin and ciprofloxacin.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 65
Author(s):  
Armin Tarrah ◽  
Shadi Pakroo ◽  
Viviana Corich ◽  
Alessio Giacomini

The existence of antibiotic-resistant bacteria in food products, particularly those carrying acquired resistance genes, has increased concerns about the transmission of these genes from beneficial microbes to human pathogens. In this study, we evaluated the antibiotic resistance-susceptibility patterns of 16 antibiotics in eight S. thermophilus strains, whose genome sequence is available, using phenotypic and genomic approaches. The minimal inhibitory concentration values collected revealed intermediate resistance to aminoglycosides, whereas susceptibility was detected for different classes of β-lactams, quinolones, glycopeptide, macrolides, and sulfonamides in all strains. A high tetracycline resistance level has been detected in strain M17PTZA496, whose genome analysis indicated the presence of the tet(S) gene and the multidrug and toxic compound extrusion (MATE) family efflux pump. Moreover, an in-depth genomic analysis revealed genomic islands and an integrative and mobilizable element (IME) in the proximity of the gene tet(S). However, despite the presence of a prophage, genomic islands, and IME, no horizontal gene transfer was detected to Lactobacillus delbrueckii subsp. lactis DSM 20355 and Lactobacillusrhamnosus GG during 24 h of skim milk fermentation, 2 weeks of refrigerated storage, and 4 h of simulated gastrointestinal transit.


2009 ◽  
Vol 53 (11) ◽  
pp. 4673-4677 ◽  
Author(s):  
James J. Vecchione ◽  
Blair Alexander ◽  
Jason K. Sello

ABSTRACT Chloramphenicol, florfenicol, and thiamphenicol are used as antibacterial drugs in clinical and veterinary medicine. Two efflux pumps of the major facilitator superfamily encoded by the cmlR1 and cmlR2 genes mediate resistance to these antibiotics in Streptomyces coelicolor, a close relative of Mycobacterium tuberculosis. The transcription of both genes was observed by reverse transcription-PCR. Disruption of cmlR1 decreased the chloramphenicol MIC 1.6-fold, while disruption of cmlR2 lowered the MIC 16-fold. The chloramphenicol MIC of wild-type S. coelicolor decreased fourfold and eightfold in the presence of reserpine and Phe-Arg-β-naphthylamide, respectively. These compounds are known to potentiate the activity of some antibacterial drugs via efflux pump inhibition. While reserpine is known to potentiate drug activity against gram-positive bacteria, this is the first time that Phe-Arg-β-naphthylamide has been shown to potentiate drug activity against a gram-positive bacterium.


2005 ◽  
Vol 49 (7) ◽  
pp. 2965-2971 ◽  
Author(s):  
Martine Braibant ◽  
Jacqueline Chevalier ◽  
Elisabeth Chaslus-Dancla ◽  
Jean-Marie Pagès ◽  
Axel Cloeckaert

ABSTRACT The florfenicol-chloramphenicol resistance gene floR from Salmonella enterica was previously identified and postulated to belong to the major facilitator (MF) superfamily of drug exporters. Here, we confirmed a computer-predicted transmembrane topological model of FloR, using the phoA gene fusion method, and classified this protein in the DHA12 family (containing 12 transmembrane domains) of MF efflux transporters. We also showed that FloR is a transporter specific for structurally associated phenicol drugs (chloramphenicol, florfenicol, thiamphenicol) which utilizes the proton motive force to energize an active efflux mechanism. By site-directed mutagenesis of specific charged residues belonging to putative transmembrane segments (TMS), two residues essential for active efflux function, D23 in TMS1 and R109 in TMS4, were identified. Of these, the acidic residue D23 seems to participate directly in the affinity pocket involved in phenicol derivative recognition. A third residue, E283 in TMS9, seems to be necessary for correct membrane folding of the transporter.


Author(s):  
Deepika Rai ◽  
Sarika Mehra

Active efflux of drugs across the membrane is a major survival strategy of bacteria against many drugs. In this work, we characterize an efflux pump EfpA, from the major facilitator superfamily, that is highly conserved among both slow growing and fast-growing mycobacterium species and has been found to be upregulated in many clinical isolates of Mycobacterium tuberculosis . The gene encoding EfpA from Mycobacterium smegmatis was over-expressed under both constitutive and an inducible promoter. Expression of efpA gene under both the promoters resulted in greater than 32-fold increased drug tolerance of M. smegmatis cells to many first-line (rifampicin, isoniazid and streptomycin) and second-line (amikacin) anti-tuberculosis drugs. Notably, drug tolerance of M. smegmatis cells to moxifloxacin increased by more than 180-fold when efpA was over-expressed. The increase in minimum inhibitory concentration (MIC) correlated with the decreased uptake of drugs including norfloxacin, moxifloxacin and ethidium bromide and the high MIC could be reversed in the presence of an efflux pump inhibitor. A correlation was observed between the MIC of drugs and the efflux pump expression level, suggesting that the latter could be modulated by varying the expression level of the efflux pump. The expression of high levels of efpA did not impact the fitness of the cells when supplemented with glucose.The efpA gene is conserved across both pathogenic and non-pathogenic mycobacteria. The efpA gene from the Mycobacterium bovis BCG/ M. tuberculosis , which is 80% identical to efpA from M. smegmatis , also led to decreased antimicrobial efficacy to many drugs, although the fold-change was lower. When over-expressed in M. bovis BCG, an 8-fold higher drug tolerance to moxifloxacin was observed . This is the first report of an efflux pump from mycobacterium species that leads to higher drug tolerance to moxifloxacin, a promising new drug for the treatment of tuberculosis.


2007 ◽  
Vol 73 (7) ◽  
pp. 2199-2206 ◽  
Author(s):  
Stuart A. Thompson ◽  
Elizabeth V. Maani ◽  
Angela H. Lindell ◽  
Catherine J. King ◽  
J. Vaun McArthur

ABSTRACT Resistances to tetracycline and mercury were identified in an environmental strain of Serratia marcescens isolated from a stream highly contaminated with heavy metals. As a step toward addressing the mechanisms of coselection of heavy metal and antibiotic resistances, the tetracycline resistance determinant was cloned in Escherichia coli. Within the cloned 13-kb segment, the tetracycline resistance locus was localized by deletion analysis and transposon mutagenesis. DNA sequence analysis of an 8.0-kb region revealed a novel gene [tetA(41)] that was predicted to encode a tetracycline efflux pump. Phylogenetic analysis showed that the TetA(41) protein was most closely related to the Tet(39) efflux protein of Acinetobacter spp. yet had less than 80% amino acid identity with known tetracycline efflux pumps. Adjacent to the tetA(41) gene was a divergently transcribed gene [tetR(41)] predicted to encode a tetracycline-responsive repressor protein. The tetA(41)-tetR(41) intergenic region contained putative operators for TetR(41) binding. The tetA(41) and tetR(41) promoters were analyzed using lacZ fusions, which showed that the expression of both the tetA(41) and tetR(41) genes exhibited TetR(41)-dependent regulation by subinhibitory concentrations of tetracycline. The apparent lack of plasmids in this S. marcescens strain, as well as the presence of metabolic genes adjacent to the tetracycline resistance locus, suggested that the genes were located on the S. marcescens chromosome and may have been acquired by transduction. The cloned Tet 41 determinant did not confer mercury resistance to E. coli, confirming that Tet 41 is a tetracycline-specific efflux pump rather than a multidrug transporter.


2019 ◽  
Vol 7 (9) ◽  
pp. 285 ◽  
Author(s):  
Pasqua ◽  
Grossi ◽  
Zennaro ◽  
Fanelli ◽  
Micheli ◽  
...  

Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug resistance in many bacteria. Besides antibiotics, multidrug efflux pumps can also extrude a large variety of compounds: Bacterial metabolites, plant-produced compounds, quorum-sensing molecules, and virulence factors. This versatility makes efflux pumps relevant players in interactions not only with other bacteria, but also with plant or animal cells. The multidrug efflux pumps belonging to the major facilitator superfamily (MFS) are widely distributed in microbial genomes and exhibit a large spectrum of substrate specificities. Multidrug MFS efflux pumps are present either as single-component transporters or as tripartite complexes. In this review, we will summarize how the multidrug MFS efflux pumps contribute to the interplay between bacteria and targeted host cells, with emphasis on their role in bacterial virulence, in the colonization of plant and animal host cells and in biofilm formation. We will also address the complexity of these interactions in the light of the underlying regulatory networks required for the effective activation of efflux pump genes.


2020 ◽  
Vol 75 (5) ◽  
pp. 1135-1139 ◽  
Author(s):  
Wuen Ee Foong ◽  
Jochen Wilhelm ◽  
Heng-Keat Tam ◽  
Klaas M Pos

Abstract Objectives To investigate the role of Major Facilitator Superfamily (MFS)-type transporters from Acinetobacter baumannii AYE in tigecycline efflux. Methods Two putative tetracycline transporter genes of A. baumannii AYE (tetA and tetG) were heterologously expressed in Escherichia coli and drug susceptibility assays were conducted with tigecycline and three other tetracycline derivatives. The importance of TetA in tigecycline transport in A. baumannii was determined by complementation of tetA in WT and Resistance Nodulation cell Division (RND) gene knockout strains of A. baumannii ATCC 19606. Gene expression of the MFS-type tetA gene and RND efflux pump genes adeB, adeG and adeJ in A. baumannii AYE in the presence of tigecycline was analysed by quantitative real-time RT–PCR. Results Overproduction of TetA or TetG conferred resistance to doxycycline, minocycline and tetracycline in E. coli. Cells expressing tetA, but not those expressing tetG, conferred resistance to tigecycline, implying that TetA is a determinant for tigecycline transport. A. baumannii WT and RND-knockout strains complemented with plasmid-encoded tetA are significantly less susceptible to tigecycline compared with non-complemented strains. Efflux pump genes tetA and adeG are up-regulated in A. baumannii AYE in the presence of subinhibitory tigecycline concentrations. Conclusions TetA plays an important role in tigecycline efflux of A. baumannii by removing the drug from cytoplasm to periplasm and, subsequently, the RND-type transporters AdeABC and AdeIJK extrude tigecycline across the outer membrane. When challenged with tigecycline, tetA is up-regulated in A. baumannii AYE. Synergy between TetA and the RND-type transporters AdeABC and/or AdeIJK appears necessary for A. baumannii to confer higher tigecycline resistance via drug efflux.


2021 ◽  
Vol 14 (6) ◽  
pp. 572
Author(s):  
Fernando Durães ◽  
Andreia Palmeira ◽  
Bárbara Cruz ◽  
Joana Freitas-Silva ◽  
Nikoletta Szemerédi ◽  
...  

The overexpression of efflux pumps is one of the causes of multidrug resistance, which leads to the inefficacy of drugs. This plays a pivotal role in antimicrobial resistance, and the most notable pumps are the AcrAB-TolC system (AcrB belongs to the resistance-nodulation-division family) and the NorA, from the major facilitator superfamily. In bacteria, these structures can also favor virulence and adaptation mechanisms, such as quorum-sensing and the formation of biofilm. In this study, the design and synthesis of a library of thioxanthones as potential efflux pump inhibitors are described. The thioxanthone derivatives were investigated for their antibacterial activity and inhibition of efflux pumps, biofilm formation, and quorum-sensing. The compounds were also studied for their potential to interact with P-glycoprotein (P-gp, ABCB1), an efflux pump present in mammalian cells, and for their cytotoxicity in both mouse fibroblasts and human Caco-2 cells. The results concerning the real-time ethidium bromide accumulation may suggest a potential bacterial efflux pump inhibition, which has not yet been reported for thioxanthones. Moreover, in vitro studies in human cells demonstrated a lack of cytotoxicity for concentrations up to 20 µM in Caco-2 cells, with some derivatives also showing potential for P-gp modulation.


Sign in / Sign up

Export Citation Format

Share Document