scholarly journals Modeling and Simulation of Pretomanid Pharmacokinetics in Pulmonary Tuberculosis Patients

2018 ◽  
Vol 62 (7) ◽  
pp. e02359-17 ◽  
Author(s):  
Michael A. Lyons

ABSTRACTPretomanid is a nitroimidazole antibiotic in late-phase clinical testing as a component of several novel antituberculosis (anti-TB) regimens. A population pharmacokinetic model for pretomanid was constructed using a Bayesian analysis of data from two phase 2 studies, PA-824-CL-007 and PA-824-CL-010, conducted with adult (median age, 27 years) patients in Cape Town, South Africa, with newly diagnosed pulmonary TB. Combined, these studies included 63 males and 59 females administered once-daily oral pretomanid doses of 50, 100, 150, 200, 600, 1,000, or 1,200 mg for 14 days. The observed pretomanid plasma concentration-time profiles for all tested doses were described by a one-compartment model with first-order absorption and elimination and a sigmoidal bioavailability dependent on dose, time, and the predose fed state. Allometric scaling with body weight (normalized to 70 kg) was used for volume of distribution and clearance, with the scaling exponents equal to 1 and 3/4, respectively. The posterior population geometric means for the clearance and volume of distribution allometric constants were 4.8 ± 0.2 liters/h and 130 ± 5 liters, respectively, and the posterior population geometric mean for the half-maximum-effect dose for the reduction of bioavailability was 450 ± 50 mg. Interindividual variability, described by the percent coefficient of variation, was 32% ± 3% for clearance, 17% ± 4% for the volume of distribution, and 74% ± 9% for the half-maximum-effect dose. This model provides a dose-exposure relationship for pretomanid in adult TB patients with potential applications to dose selection in individuals and to further clinical testing of novel pretomanid-containing anti-TB regimens.

2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Jose Francis ◽  
Simbarashe P. Zvada ◽  
Paolo Denti ◽  
Mark Hatherill ◽  
Salome Charalambous ◽  
...  

ABSTRACT Rifapentine is a rifamycin used to treat tuberculosis. As is the case for rifampin, plasma exposures of rifapentine are associated with the treatment response. While concomitant food intake and HIV infection explain part of the pharmacokinetic variability associated with rifapentine, few studies have evaluated the contribution of genetic polymorphisms. We evaluated the effects of functionally significant polymorphisms of the genes encoding OATP1B1, the pregnane X receptor (PXR), constitutive androstane (CAR), and arylacetamide deacetylase (AADAC) on rifapentine exposure. Two studies evaluating novel regimens among southern African patients with drug-susceptible pulmonary tuberculosis were included in this analysis. In the RIFAQUIN study, rifapentine was administered in the continuation phase of antituberculosis treatment in 1,200-mg-once-weekly or 900-mg-twice-weekly doses. In the Daily RPE study, 450 or 600 mg was given daily during the intensive phase of treatment. Nonlinear mixed-effects modeling was used to describe the pharmacokinetics of rifapentine and to identify significant covariates. A total of 1,144 drug concentration measurements from 326 patients were included in the analysis. Pharmacogenetic information was available for 162 patients. A one-compartment model with first-order elimination and transit compartment absorption described the data well. In a typical patient (body weight, 56 kg; fat-free mass, 45 kg), the values of clearance and volume of distribution were 1.33 liters/h and 25 liters, respectively. Patients carrying the AA variant (65.4%) of AADAC rs1803155 were found to have a 10.4% lower clearance. HIV-infected patients had a 21.9% lower bioavailability. Once-weekly doses of 1,200 mg were associated with a reduced clearance (13.2%) compared to that achieved with more frequently administered doses. Bioavailability was 23.3% lower among patients participating in the Daily RPE study than in those participating in the RIFAQUIN study. This is the first study to report the effect of AADAC rs1803155AA on rifapentine clearance. The observed increase in exposure is modest and unlikely to be of clinical relevance. The difference in bioavailability between the two studies is probably related to the differences in food intake concomitant with the dose. HIV-coinfected patients had lower rifapentine exposures.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S574-S575
Author(s):  
Jiajun Liu ◽  
Michael Neely ◽  
Jeffrey Lipman ◽  
Fekade B Sime ◽  
Jason Roberts ◽  
...  

Abstract Background Cefepime (CEF) is commonly used for adult and pediatric infections. Several studies have examined CEF’s pharmacokinetics (PK) in various populations; however, a unifying PK model for adult and pediatric subjects does not yet exist. We developed a combined population model for adult and pediatric patients and validated the model. Methods The initial model includes adult and pediatric patients with a rich cefepime sampling design. All adults received 2 g CEF while pediatric subjects received a mean of 49 (SD 5) mg/kg. One- and two-compartment models were considered as base models and were fit using a non-parametric adaptive grid algorithm within the Pmetrics package 1.5.2 (Los Angeles, CA) for R 3.5.1. Compartmental model selection was based on Akaike information criteria (AIC). Covariate relationships with PK parameters were visually inspected and mathematically assessed. Predictive performance was evaluated using bias and imprecision of the population and individual prediction models. External validation was conducted using a separate adult cohort. Results A total of 45 subjects (n = 9 adults; n = 36 pediatrics) were included in the initial PK model build and 12 subjects in the external validation cohort. Overall, the data were best described using a two-compartment model with volume of distribution (V) normalized to total body weight (TBW/70 kg) and an allometric scaled elimination rate constant (Ke) for pediatric subjects (AIC = 4,138.36). Final model observed vs. predicted plots demonstrated good fit (population R2 = 0.87, individual R2 = 0.97, Figure 1a and b). For the final model, the population median parameter values (95% credibility interval) were V0 (total volume of distribution), 11.7 L (10.2–14.6); Ke for adult, 0.66 hour−1 (0.38–0.78), Ke for pediatrics, 0.82 hour−1 (0.64–0.85), KCP (rate constant from central to peripheral compartment), 1.4 hour−1 (1.3–1.8), KPC (rate constant from peripheral to central compartment), 1.6 hour−1 (1.2–1.8). The validation cohort has 12 subjects, and the final model fit the data well (individual R2 = 0.75). Conclusion In this diverse group of adult and pediatrics, a two-compartment model described CEF PK well and was externally validated with a unique cohort. This model can serve as a population prior for real-time PK software algorithms. Disclosures All authors: No reported disclosures.


2009 ◽  
Vol 53 (10) ◽  
pp. 4399-4406 ◽  
Author(s):  
Déborah Hirt ◽  
Christophe Bardin ◽  
Serge Diagbouga ◽  
Boubacar Nacro ◽  
Hervé Hien ◽  
...  

ABSTRACT Our objective was to study didanosine pharmacokinetics in children after the administration of tablets, the only formulation available in Burkina Faso for which data are missing, and to establish relationships between doses, plasma drug concentrations, and treatment effects (efficacy/toxicity). Didanosine concentrations were measured for 40 children after 2 weeks and for 9 children after 2 to 5 months of treatment with a didanosine-lamivudine-efavirenz combination. A population pharmacokinetic model was developed with NONMEM. The link between the maximal concentration of the drug in plasma (C max), the area under the concentration-time curve (AUC), and the decrease in human immunodeficiency virus (HIV) type 1 RNA levels after 12 months of treatment was evaluated. The threshold AUC that improved efficacy was determined by the use of a Wilcoxon test for HIV RNA, and an optimized dosing schedule was simulated. Didanosine pharmacokinetics was best described by a one-compartment model with first-order absorption and elimination. The apparent clearance and volume of distribution were higher for tablets, probably due to a lower bioavailability with tablets than with pediatric powder. The decrease in the viral load after 12 months of treatment was significantly correlated with the didanosine AUC and C max (P ≤ 0.02) during the first weeks of treatment. An AUC of >0.60 mg/liter·h was significantly linked to a greater decrease in the viral load (a decrease of 3 log10 versus 2.4 log10 copies/ml; P = 0.03) than that with a lower AUC. A didanosine dose of 360 mg/m2 administered as tablets should be a more appropriate dose than 240 mg/m2 to improve efficacy for these children. However, data on adverse events with this dosage are missing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin Du ◽  
Yue Zhou ◽  
Bo-Hao Tang ◽  
Yue-E Wu ◽  
Xin-Mei Yang ◽  
...  

Objectives: Augmented renal clearance (ARC) of primarily renally eliminated antibacterial agents may result in subtherapeutic antibiotic concentrations and, as a consequence, worse clinical outcomes. Cefathiamidine is frequently used as empirical antimicrobial therapy in children with ARC, but pharmacokinetic studies in infants are lacking. This population pharmacokinetic study in infants with ARC was conducted to determine optimal dosing regimens of cefathiamidine.Methods: The population pharmacokinetics was conducted in 20 infants treated with cefathiamidine. Plasma samples of cefathiamidine were collected using opportunistic sampling, and the concentrations were detected by UPLC-MS/MS. Data analysis was performed to determine pharmacokinetic parameters and to characterize pharmacokinetic variability of cefathiamidine using nonlinear mixed effects modelling (NONMEM) software program.Results: The data (n = 36) from 20 infants (age range, 0.35–1.86 years) with ARC were fitted best with a 1-compartment model. Allometrically scaled weight and age as significant covariates influenced cefathiamidine pharmacokinetics. The median (range) values of estimated clearance and the volume of distribution were 0.22 (0.09–0.29) L/h/kg and 0.34 (0.24–0.41) L/kg, respectively. Monte Carlo simulations showed that the cefathiamidine doses of 100 mg/kg/day q12 h, 50 mg/kg/day q8 h and 75 mg/kg/day q6 h were chosen for bacteria with MIC 0.25, 0.5 and 2 mg/L, respectively.Conclusion: The population pharmacokinetic model of cefathiamidine for infants with ARC was developed. The PTA - based dosing regimens were recommended based on the final model.


2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Max Taubert ◽  
Mark Lückermann ◽  
Andreas Vente ◽  
Axel Dalhoff ◽  
Uwe Fuhr

ABSTRACTFinafloxacin is a novel fluoroquinolone with increased antibacterial activity at acidic pH and reduced susceptibility to several resistance mechanisms. A phase II study revealed a good efficacy/safety profile in patients with complicated urinary tract infections (cUTIs), while the pharmacokinetics was characterized by highly variable concentration-versus-time profiles, suggesting the need for an elaborated pharmacokinetic model. Data from three clinical trials were evaluated: 127 healthy volunteers were dosed orally (n= 77) or intravenously (n= 50), and 139 patients with cUTI received finafloxacin intravenously. Plasma (2,824 samples from volunteers and 414 samples from patients) and urine (496 samples from volunteers and 135 samples patients) concentrations were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). NONMEM was used to build a population pharmacokinetic model, and pharmacokinetic/pharmacodynamic relationships were investigated via simulations and logistic regression. A two-compartment model with first-order elimination described the data best (central volume of distribution [Vc] and peripheral volume of distribution [Vp] of 47 liters [20%] and 43 liters [67%], respectively, and elimination clearance and intercompartmental clearance of 21 liters/h [54%] and 2.8 liters/h [57%], respectively [median bootstrap estimates {coefficients of variation}]).Vcincreased with body surface area, and clearance was reduced in patients (−29%). Oral absorption was described best by parallel first- and zero-order processes (bioavailability of 75%). No pharmacodynamic surrogate parameter of clinical/microbiological outcome could be identified, which depended exclusively on the MIC of the causative pathogens. Despite the interindividual variability, the present data set does not support covariate-based dose adjustments. Based on the favorable safety and efficacy data, the clinical relevance of the observed variability appears to be limited. (This study has been registered at ClinicalTrials.gov under identifier NCT01928433.)


2007 ◽  
Vol 51 (8) ◽  
pp. 2709-2715 ◽  
Author(s):  
Bruce G. Charles ◽  
Ann K. Miller ◽  
Peter E. Nasveld ◽  
Mark G. Reid ◽  
Ivor E. Harris ◽  
...  

ABSTRACT The population pharmacokinetics of tafenoquine were studied in Australian soldiers taking tafenoquine for malarial prophylaxis. The subjects (476 males and 14 females) received a loading dose of 200 mg tafenoquine base daily for 3 days, followed by a weekly dose of 200 mg tafenoquine for 6 months. Blood samples were collected from each subject after the last loading dose and then at weeks 4, 8, and 16. Plasma tafenoquine concentrations were determined by liquid chromatography-tandem mass spectrometry. Population modeling was performed with NONMEM, using a one-compartment model. Typical values of the first-order absorption rate constant (Ka ), clearance (CL/F), and volume of distribution (V/F) were 0.243 h−1, 0.056 liters/h/kg, and 23.7 liters/kg, respectively. The intersubject variability (coefficient of variation) in CL/F and V/F was 18% and 22%, respectively. The interoccasion variability in CL/F was 18%, and the mean elimination half-life was 12.7 days. A positive linear association between weight and both CL/F and V/F was found, but this had insufficient impact to warrant dosage adjustments. Model robustness was assessed by a nonparametric bootstrap (200 samples). A degenerate visual predictive check indicated that the raw data mirrored the postdose concentration-time profiles simulated (n = 1,000) from the final model. Individual pharmacokinetic estimates for tafenoquine did not predict the prophylactic outcome with the drug for four subjects who relapsed with Plasmodium vivax malaria, as they had similar pharmacokinetics to those who were free of malaria infection. No obvious pattern existed between the plasma tafenoquine concentration and the pharmacokinetic parameter values for subjects with and without drug-associated moderate or severe adverse events. This validated population pharmacokinetic model satisfactorily describes the disposition and variability of tafenoquine used for long-term malaria prophylaxis in a large cohort of soldiers on military deployment.


2014 ◽  
Vol 59 (1) ◽  
pp. 282-288 ◽  
Author(s):  
C. M. Rubino ◽  
B. Xue ◽  
S. M. Bhavnani ◽  
W. T. Prince ◽  
Z. Ivezic-Schoenfeld ◽  
...  

ABSTRACTBC-3781, a pleuromutilin antimicrobial agent, is being developed for the treatment of patients with acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia. Data from a phase 2 study of patients with ABSSSI were used to refine a previous population pharmacokinetic (PK) model and explore potential predictors of PK variability. The previously derived population PK model based on data from three phase 1 studies was applied to sparse sampling data from a phase 2 ABSSSI study and modified as necessary. Covariate analyses were conducted to identify descriptors (e.g., body size, renal function, age) associated with interindividual variability in PK. All population PK analyses were conducted by using Monte Carlo parametric expectation maximization implemented in S-ADAPT 1.5.6. The population PK data set contained 1,167 concentrations from 129 patients; 95% of the patients had 5 or more PK samples (median, 11). The previous population PK model (three-compartment model with first-order elimination and nonlinear protein binding) provided an acceptable and unbiased fit to the data from the 129 patients. Population PK parameters were estimated with acceptable precision; individual clearance values were particularly well estimated (median individual precision of 9.15%). Graphical covariate evaluations showed no relationships between PK and age or renal function but modest relationships between body size and clearance and volume of distribution, which were not statistically significant when included in the population PK model. This population PK model will be useful for subsequent PK-pharmacodynamic analyses and simulations conducted to support phase 3 dose selection. (This study has been registered at ClinicalTrials.gov under registration no. NCT01119105.)


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S562-S562
Author(s):  
Younghee Jung ◽  
Dong-Hwan Lee ◽  
Hyoung Soo Kim

Abstract Background There is no literature on population pharmacokinetics (PK) of vancomycin in Korean patients receiving extracorporeal membrane oxygenation (ECMO) therapy. The aim of this study was to develop a population PK model for vancomycin in Korean ECMO patients. Methods We prospectively enrolled adult patients who were undergoing ECMO and receiving vancomycin from July 2018 to April 2019. After initial dose of vancomycin was administrated, serial blood samples (seven to nine times per patient) were drawn before the next dose. A population PK model for vancomycin was developed using a nonlinear mixed-effect modeling. Age, sex, creatinine clearance, and body weight were tested as potential covariates in the model. Model selection was based on log-likelihood test, model diagnostic plots, and clinical plausibility. Results Fourteen patients were included over the period. Ten received venovenous, three venoarterial, and one both type ECMO. Eleven were men and the median age was 54 (interquartile range 45–66.3). Mean estimated glomerular filtration rate (eGFR) was 69 ± 46 mL/minute/1.73m2 by the modification of diet in renal disease equation. A total of 123 vancomycin concentrations from the patients were included in the analysis. The population PK of vancomycin was best described by a two-compartment model with a proportional residual error model. The typical value (%between-subject variability) for total clearance was estimated to be 4.33 L/h (21.6%), central volume of distribution was 9.22 L, the intercompartmental clearance was 10.75 L/hr (34.9%) and the peripheral volume of distribution was 19.6 L (26.6%). The proportional residual variability was 8.81%. Creatinine clearance significantly influenced vancomycin clearance (CL). The proposed equation to estimate vancomycin clearance in Korean ECMO patients was CL = 4.33 + 0.199 × (eGFR – 56). Conclusion A two-compartment population PK model successfully describes vancomycin PK profiles in Korean ECMO patients. The model could be used to optimize the dosing regimen if more data become available from currently ongoing clinical study. Disclosures All authors: No reported disclosures.


2006 ◽  
Vol 105 (6) ◽  
pp. 1135-1146 ◽  
Author(s):  
Mariska Y. M. Peeters ◽  
Sandra A. Prins ◽  
Catherijne A. J. Knibbe ◽  
Joost DeJongh ◽  
Ron A. A. Mathôt ◽  
...  

Background Because information on the optimal dose of midazolam for sedation of nonventilated infants after major surgery is scant, a population pharmacokinetic and pharmacodynamic model is developed for this specific group. Methods Twenty-four of the 53 evaluated infants (aged 3-24 months) admitted to the Pediatric Surgery Intensive Care Unit, who required sedation judged necessary on the basis of the COMFORT-Behavior score and were randomly assigned to receive midazolam, were included in the analysis. Bispectral Index values were recorded concordantly. Population pharmacokinetic and pharmacodynamic modeling was performed using NONMEM V (GloboMax LLC, Hanover, MD). Results For midazolam, total clearance was 0.157 l/min, central volume was 3.8 l, peripheral volume was 30.2 l, and intercompartmental clearance was 0.30 l/min. Assuming 60% conversion of midazolam to 1-OH-midazolam, the volume of distribution for 1-OH-midazolam and 1-OH-midazolamglucuronide was 6.7 and 1.7 l, and clearance was 0.21 and 0.047 l/min, respectively. Depth of sedation using COMFORT-Behavior could adequately be described by a baseline, postanesthesia effect (Emax model) and midazolam effect (Emax model).The midazolam concentration at half maximum effect was 0.58 mum with a high interindividual variability of 89%. Using the Bispectral Index, in 57% of the infants the effect of midazolam could not be characterized. Conclusion In nonventilated infants after major surgery, midazolam clearance is two to five times higher than in ventilated children. From the model presented, the recommended initial dosage is a loading dose of 1 mg followed by a continuous infusion of 0.5 mg/h during the night for a COMFORT-Behavior of 12-14 in infants aged 1 yr. Large interindividual variability warrants individual titration of midazolam in these children.


2013 ◽  
Vol 58 (1) ◽  
pp. 136-143 ◽  
Author(s):  
Ahmed Hamed Salem ◽  
Courtney V. Fletcher ◽  
Richard C. Brundage

ABSTRACTThe aim of this analysis was to create a pharmacometric model of efavirenz developmental pharmacokinetics and pharmacogenetics in HIV-infected children. The data consisted of 3,172 plasma concentrations from 96 HIV-1-infected children who participated in the Pediatric AIDS Clinical Trials Group 382 (PACTG382) study. Analyses were performed using NONMEM, and the impacts of body weight, age, race, sex, formulation, liver function, and cytochrome P450 2B6 (CYP2B6)-G516T and multidrug-resistance transporter gene (MDR1)-C3435T polymorphisms were assessed. A one-compartment model using weight-based allometry on oral clearance and apparent volume of distribution adequately described the data. A sigmoid maximum-effect (Emax) maturation model demonstrated an increase in oral clearance with age to reach 90% of its mature level by the age of 9 months. The liquid formulation bioavailability relative to the capsule was found to increase with age to reach 90% of its mature value by the age of 8 years. The CYP2B6-G516T polymorphism decreased oral clearance, while the MDR1-C3435T polymorphism demonstrated no effect.


Sign in / Sign up

Export Citation Format

Share Document