scholarly journals Characteristics of Escherichia coli Sequence Type 131 Isolates That Produce Extended-Spectrum β-Lactamases: Global Distribution of theH30-Rx Sublineage

2014 ◽  
Vol 58 (7) ◽  
pp. 3762-3767 ◽  
Author(s):  
Gisele Peirano ◽  
Akke K. van der Bij ◽  
Joshua L. Freeman ◽  
Laurent Poirel ◽  
Patrice Nordmann ◽  
...  

ABSTRACTWe designed a study to describe the characteristics of sequence type 131 (ST131) lineages, including theH30-Rx sublineage, among a global collection of extended-spectrum β-lactamase (ESBL)-producingEscherichia coliisolates from 9 countries collected from 2000 to 2011. A total of 240 nonrepeat isolates from Canada, the United States, Brazil, the Netherlands, France, the United Arab Emirates (UAE), India, South Africa, and New Zealand were included. Established PCR, sequencing, and typing methods were used to define ST131 lineages,H30 andH30-Rx phylogenetic groups,gyrAandparCmutations, virotypes, and plasmid-mediated quinolone resistance determinants. The majority of the isolates produced CTX-M-15 withaac(6′)-lb-cr, belonged to phylogenetic group B2, and were positive for theH30 lineage with thegyrA1ABandparC1aABmutations. ST131 showed 15 distinct pulsotypes; 43% of the isolates belonged to four pulsotypes, with a global distribution. Seventy-five percent of the ST131 isolates belonged toH30-Rx; this sublineage was present in all the countries and was associated with multidrug resistance,blaCTX-M-15,aac(6′)-lb-cr, and virotypes A and C. TheH41 lineage was negative for the ST131pabBallele-specific PCR. The multidrug-resistantH30-Rx sublineage poses an important public health threat due to its global distribution, association with virotype C, and high prevalence among ST131 isolates that produce CTX-M-15.

2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Pan Sun ◽  
Zhenwang Bi ◽  
Maud Nilsson ◽  
Beiwen Zheng ◽  
Björn Berglund ◽  
...  

ABSTRACT We report on the coexistence of mcr-1 and bla CTX-M in multidrug-resistant, extended-spectrum β-lactamase-producing Escherichia coli belonging to the sequence type 10 complex isolated from well water in rural China. Raoultella ornithinolytica with bla KPC-2 was also detected in well water from the same area. This study shows that genes coding for resistance to last-resort antibiotics are present in wells in rural China, indicating a potential source of antibiotic resistance.


2019 ◽  
Vol 57 (5) ◽  
Author(s):  
James R. Johnson ◽  
Brian D. Johnston ◽  
Stephen B. Porter ◽  
Connie Clabots ◽  
Tricia L. Bender ◽  
...  

ABSTRACT Escherichia coli sequence type 1193 (ST1193) is an emerging multidrug-resistant pathogen. We performed longitudinal and cross-sectional surveillance for ST1193 among clinical and fecal E. coli isolates from Minneapolis Veterans Affairs Medical Center (VAMC) patients and their household members, other Minnesota centers, and national VAMCs and compared these ST1193 isolates with archival human and canine ST1193 isolates from Australia (2008). We also developed and extensively validated a novel multiplex PCR assay for ST1193 and its characteristic fimH64 (type 1 fimbrial adhesin) allele. We found that ST1193-H64 (where “H64” refers to a phylogenetic subdivision within ST1193 that is characterized by the fimH64 allele), which was uniformly fluoroquinolone resistant, appeared to emerge in the United States in a geographically staggered fashion beginning around 2011. Its prevalence among clinical and fecal E. coli isolates at the Minneapolis VAMC rose rapidly beginning in 2013, peaked in early 2017, and then plateaued or declined. In comparison with other ST14 complex (STc14) isolates, ST1193-H64 isolates were more extensively multidrug resistant, whereas their virulence genotypes were less extensive but included (uniquely) K1 capsule and fimH64. Pulsed-field gel electrophoresis separated ST1193-H64 isolates from other STc14 isolates and showed genetic commonality between archival Australian versus recent U.S. isolates, fecal versus clinical isolates, and human versus canine isolates. Three main ST1193 pulsotypes differed significantly in resistance profiles and capsular types; emergent pulsotype 2123 was associated with trimethoprim-sulfamethoxazole resistance and K1 (versus K5) capsule. These findings clarify ST1193-H64’s temporal prevalence trends as a fluoroquinolone-resistant pathogen and commensal; document clonal subsets with distinctive geographic, temporal, resistance, and virulence gene associations; and establish a new laboratory tool for rapid and simple detection of ST1193-H64.


2017 ◽  
Vol 4 (2) ◽  
Author(s):  
James R. Johnson ◽  
Stephen Porter ◽  
Paul Thuras ◽  
Mariana Castanheira

Abstract Background Extraintestinal Escherichia coli infections are increasingly challenging due to emerging antimicrobial resistance, including resistance to extended-spectrum beta-lactams and fluoroquinolones. Sequence type 131 (ST131) is a leading contributor. Methods Three hundred sixty E. coli clinical isolates from across the United States (2011–2012), selected randomly from the SENTRY collection within 3 resistance categories (extended-spectrum cephalosporin [ECS]–reduced susceptibility [RS]; fluoroquinolone-resistant, ESC-susceptible; and fluoroquinolone-susceptible, ESC-susceptible) were typed for phylogroup, sequence type complex (STc), subsets thereof, virulence genotype, O type, and beta-lactamase genes. Molecular results were compared with susceptibility profile, specimen type, age, and sex. Results Phylogroup B2 accounted for most isolates, especially fluoroquinolone-resistant isolates (83%). Group B2–derived ST131 and its H30 subclone (divided between H30Rx and H30R1) predominated, especially among ESC-RS and fluoroquinolone-resistant isolates. In contrast, among fluoroquinolone-susceptible isolates, group B2–derived STc73 and STc95 predominated. Within each resistance category, ST131 isolates exhibited more extensive resistance and/or virulence profiles than non-ST131 isolates. ST131-H30 was distributed broadly by geographical region, age, and specimen type and exhibited distinctive beta-lactamase genes. Back-calculations indicated that within the source population ST131 accounted for 26.4% of isolates overall (vs 17% in 2007), including 19.8% ST131-H30, 13.2% ST131-H30R1, and 6.6% each ST131-H30Rx and non-H30 ST131. Conclusions ST131-H30, with its ESC resistance-associated H30Rx subset, caused most antimicrobial-resistant E. coli infections across the United States in 2011–2012 and, since 2007, increased in relative prevalence by >50%. Focused attention to this strain could help combat the current E. coli resistance epidemic.


2014 ◽  
Vol 58 (11) ◽  
pp. 6953-6957 ◽  
Author(s):  
Fupin Hu ◽  
Jessica A. O'Hara ◽  
Jesabel I. Rivera ◽  
Yohei Doi

ABSTRACTWe characterized 30 community-associated extended-spectrum-β-lactamase-producingEscherichia coliisolates collected from five hospitals in the United States. Nineteen sequence types were identified. All sequence type 131 (ST131) isolates had thefimH30 allele. IncFII-FIA-FIB was the most common replicon type among theblaCTX-M-carrying plasmids, followed by IncFII-FIA and IncA/C. Restriction analysis of the IncFII-FIA-FIB and IncFII-FIA plasmids yielded related profiles for plasmids originating from different hospitals. The plasmids containingblaCTX-MorblaSHVwere stably maintained after serial passages.


2012 ◽  
Vol 56 (5) ◽  
pp. 2364-2370 ◽  
Author(s):  
James R. Johnson ◽  
Carl Urban ◽  
Scott J. Weissman ◽  
James H. Jorgensen ◽  
James S. Lewis ◽  
...  

ABSTRACTEscherichia colisequence type ST131 (from phylogenetic group B2), often carrying the extended-spectrum-β-lactamase (ESBL) geneblaCTX-M-15, is an emerging globally disseminated pathogen that has received comparatively little attention in the United States. Accordingly, a convenience sample of 351 ESBL-producingE. coliisolates from 15 U.S. centers (collected in 2000 to 2009) underwent PCR-based phylotyping and detection of ST131 andblaCTX-M-15. A total of 200 isolates, comprising 4 groups of 50 isolates each that were (i)blaCTX-M-15negative non-ST131, (ii)blaCTX-M-15positive non-ST131, (iii)blaCTX-M-15negative ST131, or (iv)blaCTX-M-15positive ST131, also underwent virulence genotyping, antimicrobial susceptibility testing, and pulsed-field gel electrophoresis (PFGE). Overall, 201 (57%) isolates exhibitedblaCTX-M-15, whereas 165 (47%) were ST131. ST131 accounted for 56% ofblaCTX-M-15-positive- versus 35% ofblaCTX-M-15-negative isolates (P< 0.001). Whereas ST131 accounted for 94% of the 175 total group B2 isolates, non-ST131 isolates were phylogenetically distributed byblaCTX-M-15status, with groups A (blaCTX-M-15-positive isolates) and D (blaCTX-M-15-negative isolates) predominating. BothblaCTX-M-15and ST131 occurred at all participating centers, were recovered from children and adults, increased significantly in prevalence post-2003, and were associated with molecularly inferred virulence. Compared with non-ST131 isolates, ST131 isolates had higher virulence scores, distinctive virulence profiles, and more-homogeneous PFGE profiles.blaCTX-M-15was associated with extensive antimicrobial resistance and ST131 with fluoroquinolone resistance. Thus,E. coliST131 andblaCTX-M-15are emergent, widely distributed, and predominant among ESBL-positiveE. colistrains in the United States, among children and adults alike. Enhanced virulence and antimicrobial resistance have likely promoted the epidemiological success of these emerging public health threats.


2012 ◽  
Vol 78 (13) ◽  
pp. 4677-4682 ◽  
Author(s):  
Charlotte Valat ◽  
Frédéric Auvray ◽  
Karine Forest ◽  
Véronique Métayer ◽  
Emilie Gay ◽  
...  

ABSTRACTIn line with recent reports of extended-spectrum beta-lactamases (ESBLs) inEscherichia coliisolates of highly virulent serotypes, such as O104:H4, we investigated the distribution of phylogroups (A, B1, B2, D) and virulence factor (VF)-encoding genes in 204 ESBL-producingE. coliisolates from diarrheic cattle. ESBL genes, VFs, and phylogroups were identified by PCR and a commercial DNA array (Alere, France). ESBL genes belonged mostly to the CTX-M-1 (65.7%) and CTX-M-9 (27.0%) groups, whereas those of the CTX-M-2 and TEM groups were much less represented (3.9% and 3.4%, respectively). One ESBL isolate wasstx1andeaepositive and belonged to a major enterohemorrhagicE. coli(EHEC) serotype (O111:H8). Two other isolates wereeaepositive butstxnegative; one of these had serotype O26:H11. ESBL isolates belonged mainly to phylogroup A (55.4%) and, to lesser extents, to phylogroups D (25.5%) and B1 (15.6%), whereas B2 strains were quasi-absent (1/204). The number of VFs was significantly higher in phylogroup B1 than in phylogroups A (P= 0.04) and D (P= 0.02). Almost all of the VFs detected were found in CTX-M-1 isolates, whereas only 64.3% and 33.3% of them were found in CTX-M-9 and CTX-M-2 isolates, respectively. These results indicated that the widespread dissemination of theblaCTX-Mgenes within theE. colipopulation from cattle still spared the subpopulation of EHEC/Shiga-toxigenicE. coli(STEC) isolates. In contrast to other reports on non-ESBL-producing isolates from domestic animals, B1 was not the main phylogroup identified. However, B1 was found to be the most virulent phylogroup, suggesting host-specific distribution of virulence determinants among phylogenetic groups.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Natalia Malachowa ◽  
Scott D. Kobayashi ◽  
Adeline R. Porter ◽  
Brett Freedman ◽  
Patrick W. Hanley ◽  
...  

ABSTRACT Klebsiella pneumoniae is a human gut communal organism and notorious opportunistic pathogen. The relative high burden of asymptomatic colonization by K. pneumoniae is often compounded by multidrug resistance—a potential problem for individuals with significant comorbidities or other risk factors for infection. A carbapenem-resistant K. pneumoniae strain classified as multilocus sequence type 258 (ST258) is widespread in the United States and is usually multidrug resistant. Thus, treatment of ST258 infections is often difficult. Inasmuch as new preventive and/or therapeutic measures are needed for treatment of such infections, we developed an ST258 pneumonia model in cynomolgus macaques and tested the ability of an ST258 capsule polysaccharide type 2 (CPS2) vaccine to moderate disease severity. Compared with sham-vaccinated animals, those vaccinated with ST258 CPS2 had significantly less disease as assessed by radiography 24 h after intrabronchial installation of 108 CFU of ST258. All macaques vaccinated with CPS2 ultimately developed ST258-specific antibodies that significantly enhanced serum bactericidal activity and killing of ST258 by macaque neutrophils ex vivo. Consistent with a protective immune response to CPS2, transcripts encoding inflammatory mediators were increased in infected lung tissues obtained from CPS-vaccinated animals compared with control, sham-vaccinated macaques. Taken together, our data provide support for the idea that vaccination with ST258 CPS can be used to prevent or moderate infections caused by ST258. As with studies performed decades earlier, we propose that this prime-boost vaccination approach can be extended to include multiple capsule types. IMPORTANCE Multidrug-resistant bacteria continue to be a major problem worldwide, especially among individuals with significant comorbidities and other risk factors for infection. K. pneumoniae is among the leading causes of health care-associated infections, and the organism is often resistant to multiple classes of antibiotics. A carbapenem-resistant K. pneumoniae strain known as multilocus sequence type 258 (ST258) is the predominant carbapenem-resistant Enterobacteriaceae in the health care setting in the United States. Infections caused by ST258 are often difficult to treat and new prophylactic measures and therapeutic approaches are needed. To that end, we developed a lower respiratory tract infection model in cynomolgus macaques in which to test the ability of ST258 CPS to protect against severe ST258 infection.


2009 ◽  
Vol 54 (1) ◽  
pp. 546-550 ◽  
Author(s):  
James R. Johnson ◽  
Brian Johnston ◽  
Connie Clabots ◽  
Michael A. Kuskowski ◽  
Swaroop Pendyala ◽  
...  

ABSTRACT Among 40 Escherichia coli urine isolates from renal transplant recipients (Galveston, TX, 2003 to 2005), sequence type ST131 (O25:H4) was highly prevalent (representing 35% of isolates overall and 60% of fluoroquinolone-resistant isolates), virulent appearing, antimicrobial resistant (but extended-spectrum-cephalosporin susceptible), and associated with black race. Pulsotypes were diverse; some were linked to other locales. ST131 emerged significantly during the study period. These findings suggest that E. coli ST131 may constitute an important new multidrug-resistant threat to renal transplant recipients.


2017 ◽  
Vol 83 (6) ◽  
Author(s):  
James R. Johnson ◽  
Stephen B. Porter ◽  
Brian Johnston ◽  
Paul Thuras ◽  
Sarah Clock ◽  
...  

ABSTRACT Chicken meat products are hypothesized to be vehicles for transmitting antimicrobial-resistant and extraintestinal pathogenic Escherichia coli (ExPEC) to consumers. To reassess this hypothesis in the current era of heightened concerns about antimicrobial use in food animals, we analyzed 175 chicken-source E. coli isolates from a 2013 Consumer Reports national survey. Isolates were screened by PCR for ExPEC-defining virulence genes. The 25 ExPEC isolates (12% of 175) and a 2:1 randomly selected set of 50 non-ExPEC isolates were assessed for their phylogenetic/clonal backgrounds and virulence genotypes for comparison with their resistance profiles and the claims on the retail packaging label (“organic,” “no antibiotics,” and “natural”). Compared with the findings for non-ExPEC isolates, the group of ExPEC isolates had a higher prevalence of phylogroup B2 isolates (44% versus 4%; P < 0.001) and a lower prevalence of phylogroup A isolates (4% versus 30%; P = 0.001), a higher prevalence of multiple individual virulence genes, higher virulence scores (median, 11 [range, 4 to 16] versus 8 [range, 1 to 14]; P = 0.001), and higher resistance scores (median, 4 [range, 0 to 8] versus 3 [range, 0 to 10]; P < 0.001). All five isolates of sequence type 131 (ST131) were ExPEC (P = 0.003), were as extensively resistant as the other isolates tested, and had higher virulence scores than the other isolates tested (median, 12 [range, 11 to 13] versus 8 [range, 1 to 16]; P = 0.005). Organic labeling predicted lower resistance scores (median, 2 [range, 0 to 3] versus 4 [range, 0 to 10]; P = 0.008) but no difference in ExPEC status or virulence scores. These findings document a persisting reservoir of extensively antimicrobial-resistant ExPEC isolates, including isolates from ST131, in retail chicken products in the United States, suggesting a potential public health threat. IMPORTANCE We found that among Escherichia coli isolates from retail chicken meat products purchased across the United States in 2013 (many of these isolates being extensively antibiotic resistant), a minority had genetic profiles suggesting an ability to cause extraintestinal infections in humans, such as urinary tract infection, implying a risk of foodborne disease. Although isolates from products labeled “organic” were less extensively antibiotic resistant than other isolates, they did not appear to be less virulent. These findings suggest that retail chicken products in the United States, even if they are labeled “organic,” pose a potential health threat to consumers because they are contaminated with extensively antibiotic-resistant and, presumably, virulent E. coli isolates.


2016 ◽  
Vol 60 (8) ◽  
pp. 5080-5084 ◽  
Author(s):  
Odette J. Bernasconi ◽  
Esther Kuenzli ◽  
João Pires ◽  
Regula Tinguely ◽  
Alessandra Carattoli ◽  
...  

ABSTRACTStool samples from 38 travelers returning from India were screened for extended-spectrum cephalosporin- and carbapenem-resistantEnterobacteriaceaeimplementing standard selective plates. Twenty-six (76.3%) people were colonized with CTX-M or DHA producers, but none of the strains was colistin resistant and/ormcr-1positive. Nevertheless, using overnight enrichment and CHROMagar Orientation plates supplemented with colistin, four people (10.5%) were found to be colonized with colistin-resistantEscherichia coli. One cephalosporin-susceptible sequence type 10 (ST10) strain carried a 4,211-bp ISApl1-mcr-1-ISApl1element in an IncHI2 plasmid backbone.


Sign in / Sign up

Export Citation Format

Share Document