scholarly journals Bioluminescence Method for In Vitro Screening of Plasmodium Transmission-Blocking Compounds

2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Raquel Azevedo ◽  
Marija Markovic ◽  
Marta Machado ◽  
Blandine Franke-Fayard ◽  
António M. Mendes ◽  
...  

ABSTRACT The sporogonic stage of the life cycle of Plasmodium spp., the causative agents of malaria, occurs inside the parasite's mosquito vector, where a process of fertilization, meiosis, and mitotic divisions culminates in the generation of large numbers of mammalian-infective sporozoites. Efforts to cultivate Plasmodium mosquito stages in vitro have proved challenging and yielded only moderate success. Here, we describe a methodology that simplifies the in vitro screening of much-needed transmission-blocking (TB) compounds employing a bioluminescence-based method to monitor the in vitro development of sporogonic stages of the rodent malaria parasite Plasmodium berghei. Our proof-of-principle assessment of the in vitro TB activity of several commonly used antimalarial compounds identified cycloheximide, thiostrepton, and atovaquone as the most active compounds against the parasite's sporogonic stages. The TB activity of these compounds was further confirmed by in vivo studies that validated our newly developed in vitro approach to TB compound screening.

2011 ◽  
Vol 56 (2) ◽  
pp. 658-665 ◽  
Author(s):  
Marie Crisel B. Erfe ◽  
Consuelo V. David ◽  
Cher Huang ◽  
Victoria Lu ◽  
Ana Claudia Maretti-Mira ◽  
...  

ABSTRACTHost defense peptides are naturally occurring molecules that play essential roles in innate immunity to infection. Based on prior structure-function knowledge, we tested two synthetic peptides (RP-1 and AA-RP-1) modeled on the conserved, microbicidal α-helical domain of mammalian CXCL4 platelet kinocidins. These peptides were evaluated for efficacy againstLeishmaniaspecies, the causative agents of the group of diseases known as leishmaniasis.In vitroantileishmanial activity was assessed against three distinctLeishmaniastrains by measuring proliferation, metabolic activity and parasite viability after exposure to various concentrations of peptides. We demonstrate that micromolar concentrations of RP-1 and AA-RP-1 caused dose-dependent growth inhibition ofLeishmaniapromastigotes. This antileishmanial activity correlated with rapid membrane disruption, as well as with a loss of mitochondrial transmembrane potential. In addition, RP-1 and AA-RP-1 demonstrated distinct and significantin vivoantileishmanial activities in a mouse model of experimental visceral leishmaniasis after intravenous administration. These results establish efficacy of RP-1 lineage synthetic peptides againstLeishmaniaspeciesin vitroand after intravenous administrationin vivoand provide further validation of proof of concept for the development of these and related systemic anti-infective peptides targeting pathogens that are resistant to conventional antibiotics.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
António M. Mendes ◽  
Inês S. Albuquerque ◽  
Marta Machado ◽  
Joana Pissarra ◽  
Patrícia Meireles ◽  
...  

ABSTRACT Avermectins are powerful endectocides with an established potential to reduce the incidence of vector-borne diseases. Here, we show that several avermectins inhibit the hepatic stage of Plasmodium infection in vitro. Notably, ivermectin potently inhibits liver infection in vivo by impairing parasite development inside hepatocytes. This impairment has a clear impact on the ensuing blood stage parasitemia, reducing disease severity and enhancing host survival. Ivermectin has been proposed as a tool to control malaria transmission because of its effects on the mosquito vector. Our study extends the effect of ivermectin to the early stages of mammalian host infection and supports the inclusion of this multipurpose drug in malaria control strategies.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Yi Cao ◽  
Robert J. Hart ◽  
Geetha P. Bansal ◽  
Nirbhay Kumar

ABSTRACT Sexual-stage proteins have a distinct function in the mosquito vector during transmission and also represent targets for the development of malaria transmission-blocking vaccine. P48/45, a leading vaccine candidate, is critical for male gamete fertility and shows >50% similarity across various species of Plasmodium. We evaluated functional conservation of P48/45 in Plasmodium vivax and P. berghei with the motivation to establish transgenic P. berghei strains expressing P. vivax P48/45 (Pvs48/45) in an in vivo assay to evaluate the transmission-blocking activity of antibodies elicited by Pvs48/45. Homologous recombination was employed to target P. berghei s48/45 (pbs48/45) for knockout (KO) or for its replacement by two different forms of P. vivax s48/45 (pvs48/45) (the full-length gene and a chimeric gene consisting of pbs48/45 5′ signal and 3′ anchor sequences flanking pvs48/45). Expression of Pvs48/45 in transgenic parasites and lack of expression of any P48/45 in KO parasites were confirmed by reverse transcription-PCR (RT-PCR) and Western blotting. Both transgenic and knockout parasites revealed asexual growth kinetics in mice comparable to that seen with wild-type parasites. When employed in mosquito infection experiments, both transgenic parasite strains remained transmission competent and developed into infectious sporozoites, whereas the knockout parasites were incapable of establishing mosquito-stage infection. These results indicate the functional conservation of P48/45 protein during transmission, and the transgenic parasites generated in this study represent a valuable tool to evaluate the protective efficacy of transmission-blocking antibodies elicited by Pvs48/45-based vaccines using an in vivo mouse animal assay instead of ex vivo membrane feeding assays (MFA) relying on access to P. vivax gametocytes from infected patients. IMPORTANCE Malaria transmission depends upon successful sexual differentiation and maturation of parasites in the vertebrate host and further development in the mosquito midgut. Stage-specific proteins in the sexual stages have been shown to play a critical role in development and successful transmission through the anopheline mosquito vector. Studies presented in the current manuscript evaluated functional conservation of one such protein, P48/45, in two diverse species (P. berghei and P. vivax). Replacement of endogenous pbs48/45 in P. berghei with pvs48/45 (P. vivax homologue) did not affect the viability of the parasites, and the transgenic parasites expressing Pvs48/45 remained transmission competent. These studies establish not only the functional conservation of P48/45 in P. berghei and P. vivax but also offer an opportunity to develop an in vivo test model for Pvs48/45-based P. vivax transmission-blocking vaccines, currently under development.


1995 ◽  
Vol 23 (1) ◽  
pp. 61-73
Author(s):  
Coenraad Hendriksen ◽  
Johan van der Gun

In the quality control of vaccine batches, the potency testing of inactivated vaccines is one of the areas requiring very large numbers of animals, which usually suffer significant distress as a result of the experimental procedures employed. This article deals with the potency testing of diphtheria and tetanus toxoids, two vaccines which are used extensively throughout the world. The relevance of the potency test prescribed by the European Pharmacopoeia monographs is questioned. The validity of the potency test as a model for the human response, the ability of the test to be standardised, and the relevance of the test in relation to the quality of the product are discussed. It is concluded that the potency test has only limited predictive value for the antitoxin responses to be expected in recipients of these toxoids. An alternative approach for estimating the potency of toxoid batches is discussed, in which a distinction is made between estimation of the immunogenic potency of the first few batches obtained from a seed lot and monitoring the consistency of the quality of subsequent batches. The use of animals is limited to the first few batches. Monitoring the consistency of the quality of subsequent batches is based on in vitro test methods. Factors which hamper the introduction and acceptance of the alternative approach are considered. Finally, proposals are made for replacement, reduction and/or refinement (the Three Rs) in the use of animals in the routine potency testing of toxoids.


Parasitology ◽  
1981 ◽  
Vol 83 (2) ◽  
pp. 243-247 ◽  
Author(s):  
Margaretha K. S. Gustafsson ◽  
Marianne C. Wikgren

SUMMARYThe activation of the peptidergic neurosecretory system in Diphyllobothrium dendriticum was studied following cultivation of plerocercoids for short times in vitro and in vivo. In the plerocercoid the neurosecretory cells gave a very weak reaction with paraldehyde fuchsin (PAF). After cultivation for 1 h large numbers of neurosecretory cells filled with PAF-positive granules were evident. The significance of the activation of the neurosecretory system during the transfer of the worm from the cold-blooded fish host to the warm-blooded final host is discussed.


2021 ◽  
Vol 14 (7) ◽  
pp. 644
Author(s):  
Cintya Perdomo ◽  
Elena Aguilera ◽  
Ileana Corvo ◽  
Paula Faral-Tello ◽  
Elva Serna ◽  
...  

The trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania are the causative agents of human African trypanosomiasis, Chagas Disease and Leishmaniasis, respectively. These infections primarily affect poor, rural communities in the developing world, and are responsible for trapping sufferers and their families in a disease/poverty cycle. The development of new chemotherapies is a priority given that existing drug treatments are problematic. In our search for novel anti-trypanosomatid agents, we assess the growth-inhibitory properties of >450 compounds from in-house and/or “Pathogen Box” (PBox) libraries against L. infantum, L. amazonensis, L.braziliensis, T. cruzi and T. brucei and evaluate the toxicities of the most promising agents towards murine macrophages. Screens using the in-house series identified 17 structures with activity against and selective toward Leishmania: Compounds displayed 50% inhibitory concentrations between 0.09 and 25 μM and had selectivity index values >10. For the PBox library, ~20% of chemicals exhibited anti-parasitic properties including five structures whose activity against L. infantum had not been reported before. These five compounds displayed no toxicity towards murine macrophages over the range tested with three being active in an in vivo murine model of the cutaneous disease, with 100% survival of infected animals. Additionally, the oral combination of three of them in the in vivo Chagas disease murine model demonstrated full control of the parasitemia. Interestingly, phenotyping revealed that the reference strain responds differently to the five PBox-derived chemicals relative to parasites isolated from a dog. Together, our data identified one drug candidate that displays activity against Leishmania and other Trypanosomatidae in vitro and in vivo, while exhibiting low toxicity to cultured mammalian cells and low in vivo acute toxicity.


2019 ◽  
Vol 202 (8) ◽  
Author(s):  
Courtney E. Price ◽  
Dustin G. Brown ◽  
Dominique H. Limoli ◽  
Vanessa V. Phelan ◽  
George A. O’Toole

ABSTRACT Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus. We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner. IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro. Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Seong Eun Kim ◽  
Hee Kyung Kim ◽  
Su-Mi Choi ◽  
Yohan Yu ◽  
Uh Jin Kim ◽  
...  

ABSTRACT The mortality rate associated with Vibrio vulnificus sepsis remains high. An in vitro time-kill assay revealed synergism between tigecycline and ciprofloxacin. The survival rate was significantly higher in mice treated with tigecycline plus ciprofloxacin than in mice treated with cefotaxime plus minocycline. Thus, combination treatment with tigecycline-ciprofloxacin may be an effective novel antibiotic regimen for V. vulnificus sepsis.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ørjan Samuelsen ◽  
Ove Alexander Høgmoen Åstrand ◽  
Christopher Fröhlich ◽  
Adam Heikal ◽  
Susann Skagseth ◽  
...  

ABSTRACT Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


2015 ◽  
Vol 36 (6) ◽  
pp. 913-922 ◽  
Author(s):  
Nallani Vijay Kumar ◽  
Jianbo Yang ◽  
Jitesh K. Pillai ◽  
Swati Rawat ◽  
Carlos Solano ◽  
...  

The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.


Sign in / Sign up

Export Citation Format

Share Document