scholarly journals Antimicrobial Activities of Ceftaroline and Comparator Agents against Bacterial Organisms Causing Bacteremia in Patients with Skin and Skin Structure Infections in U.S. Medical Centers, 2008 to 2014

2016 ◽  
Vol 60 (4) ◽  
pp. 2558-2563 ◽  
Author(s):  
Helio S. Sader ◽  
Robert K. Flamm ◽  
Rodrigo E. Mendes ◽  
David J. Farrell ◽  
Ronald N. Jones

ABSTRACTWe evaluated the antimicrobial susceptibility of 1,454 organisms consecutively collected from patients with bacteremia associated with skin and skin structure infections. The most common organisms obtained wereStaphylococcus aureus(670 organisms [46.1%]),Escherichia coli(200 organisms [13.8%]), β-hemolytic streptococci (βHS) (138 organisms [9.5%]), andKlebsiella pneumoniae(109 organisms [7.5%]). The susceptibility rates for ceftaroline were 97.9% forS. aureus(95.9% among methicillin-resistantS. aureus[MRSA]), 100.0% for βHS, 86.5% forE. coli, and 89.0% forK. pneumoniae. Ceftaroline and tigecycline provided the best overall coverage.

2012 ◽  
Vol 56 (6) ◽  
pp. 2888-2893 ◽  
Author(s):  
Nan-Yao Lee ◽  
Ching-Chi Lee ◽  
Wei-Han Huang ◽  
Ko-Chung Tsui ◽  
Po-Ren Hsueh ◽  
...  

ABSTRACTA retrospective study was conducted at two medical centers in Taiwan to evaluate the clinical characteristics, outcomes, and risk factors for mortality among patients treated with a carbapenem for bacteremia caused by extended-spectrum-beta-lactamase (ESBL)-producing organisms. A total of 251 patients with bacteremia caused by ESBL-producingEscherichia coliandKlebsiella pneumoniaeisolates treated by a carbapenem were identified. Among these ESBL-producing isolates, rates of susceptibility to ertapenem (MICs ≤ 0.25 μg/ml) were 83.8% and 76.4%, respectively; those to meropenem were 100% and 99.3%, respectively; and those to imipenem were 100% and 97.9%, respectively. There were no significant differences in the critical illness rate (P= 0.1) or sepsis-related mortality rate (P= 0.2) for patients with bacteremia caused by ESBL-producingK. pneumoniae(140 isolates, 55.8%) andE. coli(111 isolates, 44.2%). Multivariate analysis of variables related to sepsis-related mortality revealed that the presence of severe sepsis (odds ratio [OR], 15.9; 95% confidence interval [CI], 5.84 to 43.34;P< 0.001), hospital-onset bacteremia (OR, 4.65; 95% CI, 1.42 to 15.24;P= 0.01), and ertapenem-nonsusceptible isolates (OR, 5.12; 95% CI, 2.04 to 12.88;P= 0.001) were independent risk factors. The patients receiving inappropriate therapy had a higher sepsis-related mortality than those with appropriate therapy (P= 0.002), irrespective of ertapenem, imipenem, or meropenem therapy. Infections due to the ertapenem-susceptible isolates (MICs ≤ 0.25 μg/ml) were associated with a more favorable outcome than those due to ertapenem-nonsusceptible isolates (MICs > 0.25 μg/ml), if treated by a carbapenem. However, the mortality for patients with bacteremic episodes due to isolates with MICs of ≤0.5 μg/ml was similar to the mortality for those whose isolates had MICs of >0.5 μg/ml (P= 0.8). Such a finding supports the rationale of the current CLSI 2011 criteria for carbapenems forEnterobacteriaceae.


2015 ◽  
Vol 59 (6) ◽  
pp. 3413-3423 ◽  
Author(s):  
Tânia Curiao ◽  
Emmanuela Marchi ◽  
Carlo Viti ◽  
Marco R. Oggioni ◽  
Fernando Baquero ◽  
...  

ABSTRACTExposure to biocides may result in cross-resistance to other antimicrobials. Changes in biocide and antibiotic susceptibilities, metabolism, and fitness costs were studied here in biocide-selectedEscherichia coliandKlebsiella pneumoniaemutants.E. coliandK. pneumoniaemutants with various degrees of triclosan susceptibility were obtained after exposure to triclosan (TRI), benzalkonium chloride (BKC), chlorhexidine (CHX) or sodium hypochlorite (SHC), and ampicillin or ciprofloxacin. Alterations in antimicrobial susceptibility and metabolism in mutants were tested using Phenotype MicroArrays. The expression of AcrAB pump and global regulators (SoxR, MarA, and RamA) was measured by quantitative reverse transcription-PCR (qRT-PCR), and the central part of thefabIgene was sequenced. The fitness costs of resistance were assessed by a comparison of relative growth rates. Triclosan-resistant (TRIr) and triclosan-hypersusceptible (TRIhs) mutants ofE. coliandK. pneumoniaewere obtained after selection with biocides and/or antibiotics.E. coliTRIrmutants, including those with mutations in thefabIgene or in the expression ofacrB,acrF, andmarA, exhibited changes in susceptibility to TRI, CHX, and antibiotics. TRIrmutants for which the TRI MIC was high presented improved metabolism of carboxylic acids, amino acids, and carbohydrates. In TRIrmutants, resistance to one antimicrobial provoked hypersusceptibility to another one(s). TRIrmutants had fitness costs, particularlymarA-overexpressing (E. coli) orramA-overexpressing (K. pneumoniae) mutants. TRI, BKC, and CIP exposure frequently yielded TRIrmutants exhibiting alterations in AraC-like global regulators (MarA, SoxR, and RamA), AcrAB-TolC, and/or FabI, and influencing antimicrobial susceptibility, fitness, and metabolism. These various phenotypes suggest a trade-off of different selective processes shaping the evolution toward antibiotic/biocide resistance and influencing other adaptive traits.


2012 ◽  
Vol 56 (5) ◽  
pp. 2753-2755 ◽  
Author(s):  
Louisa D'Lima ◽  
Lisa Friedman ◽  
Lu Wang ◽  
Ping Xu ◽  
Mark Anderson ◽  
...  

ABSTRACTTwenty-five serial passages ofEscherichia coli,Pseudomonas aeruginosa, andStaphylococcus aureusand 50 passages of methicillin-resistantStaphylococcus aureusresulted in no significant increase in NVC-422 MICs, while ciprofloxacin MICs increased 256-fold forE. coliand 32-fold forP. aeruginosaandS. aureus. Mupirocin, fusidic acid, and retapamulin MICs for MRSA increased 64-, 256-, and 16-fold, respectively. No cross-resistance to NVC-422 was observed with mupirocin-, fusidic acid-, and retapamulin-resistant strains.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Helio S. Sader ◽  
Rodrigo E. Mendes ◽  
Jennifer M. Streit ◽  
Robert K. Flamm

ABSTRACT We evaluated trends in Staphylococcus aureus antimicrobial susceptibility in U.S. hospitals in the 2010–2016 period. A total of 21,056 clinical isolates from 42 medical centers were tested for susceptibility by broth microdilution methods. Methicillin-resistant S. aureus (MRSA) rates decreased from 50.0% (in 2010) to 42.2% (in 2016). Susceptibility to erythromycin, levofloxacin, and clindamycin increased slightly, whereas susceptibility to ceftaroline, trimethoprim-sulfamethoxazole, and tetracycline remained stable. Ceftaroline retained potent activity against methicillin-susceptible S. aureus (MSSA) and MRSA (97.2% susceptible) with no marked variations.


2015 ◽  
Vol 59 (4) ◽  
pp. 2458-2461 ◽  
Author(s):  
Helio S. Sader ◽  
Robert K. Flamm ◽  
Jennifer M. Streit ◽  
David J. Farrell ◽  
Ronald N. Jones

ABSTRACTA total of 84,704 isolates were collected from 191 medical centers in 2009 to 2013 and tested for susceptibility to ceftaroline and comparator agents by broth microdilution methods. Ceftaroline inhibited allStaphylococcus aureusisolates at ≤2 μg/ml and was very active against methicillin-resistant strains (MIC at which 90% of the isolates tested are inhibited [MIC90], 1 μg/ml; 97.6% susceptible). AmongStreptococcus pneumoniaeisolates, the highest ceftaroline MIC was 0.5 μg/ml, and ceftaroline activity against the most commonEnterobacteriaceaespecies (MIC50, 0.12 μg/ml; 78.9% susceptible) was similar to that of ceftriaxone (MIC50, ≤0.25 μg/ml; 86.8% susceptible).


2010 ◽  
Vol 54 (7) ◽  
pp. 3043-3046 ◽  
Author(s):  
Stephen P. Hawser ◽  
Samuel K. Bouchillon ◽  
Daryl J. Hoban ◽  
Robert E. Badal ◽  
Rafael Cantón ◽  
...  

ABSTRACT From 2002 to 2008, there was a significant increase in extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli isolates in European intra-abdominal infections, from 4.3% in 2002 to 11.8% in 2008 (P < 0.001), but not for ESBL-positive Klebsiella pneumoniae isolates (16.4% to 17.9% [P > 0.05]). Hospital-associated isolates were more common than community-associated isolates, at 14.0% versus 6.5%, respectively, for E. coli (P < 0.001) and 20.9% versus 5.3%, respectively, for K. pneumoniae (P < 0.01). Carbapenems were consistently the most active drugs tested.


mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
Olaya Rendueles ◽  
Laetitia Travier ◽  
Patricia Latour-Lambert ◽  
Thierry Fontaine ◽  
Julie Magnus ◽  
...  

ABSTRACTBacterial biofilms often form multispecies communities in which complex but ill-understood competition and cooperation interactions occur. In light of the profound physiological modifications associated with this lifestyle, we hypothesized that the biofilm environment might represent an untapped source of natural bioactive molecules interfering with bacterial adhesion or biofilm formation. We produced cell-free solutions extracted fromin vitromature biofilms formed by 122 naturalEscherichia coliisolates, and we screened these biofilm extracts for antiadhesion molecules active on a panel of Gram-positive and Gram-negative bacteria. Using this approach, we showed that 20% of the tested biofilm extracts contained molecules that antagonize bacterial growth or adhesion. We characterized a compound, produced by a commensal animalE. colistrain, for which activity is detected only in biofilm extract. Biochemical and genetic analyses showed that this compound corresponds to a new type of released high-molecular-weight polysaccharide whose biofilm-associated production is regulated by the RfaH protein. We demonstrated that the antiadhesion activity of this polysaccharide was restricted to Gram-positive bacteria and that its production reduced susceptibility to invasion and provided rapid exclusion ofStaphylococcus aureusfrom mixedE. coliandS. aureusbiofilms. Our results therefore demonstrate that biofilms contain molecules that contribute to the dynamics of mixed bacterial communities and that are not or only poorly detected in unconcentrated planktonic supernatants. Systematic identification of these compounds could lead to strategies that limit pathogen surface colonization and reduce the burden associated with the development of bacterial biofilms on medical devices.IMPORTANCEWe sought to demonstrate that bacterial biofilms are reservoirs for unknown molecules that antagonize bacterial adhesion. The use of natural strains representative ofEscherichia colispecies biodiversity showed that nonbiocidal antiadhesion polysaccharides are frequently found in mature biofilm extracts (bacterium-free suspensions which contain soluble molecules produced within the biofilm). Release of an antiadhesion polysaccharide confers a competitive advantage upon the producing strain against clinically relevant pathogens such asStaphylococcus aureus. Hence, exploring the biofilm environment provides a better understanding of bacterial interactions within complex communities and could lead to improved control of pathogen colonization.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Dongxing Tian ◽  
Bingjie Wang ◽  
Hong Zhang ◽  
Fen Pan ◽  
Chun Wang ◽  
...  

ABSTRACT The continuous emergence of novel New Delhi metallo-β-lactamase-5 (NDM-5)-producing Enterobacteriaceae isolates is receiving more and more public attention. Twenty-two NDM-5-producing strains were identified from 146 carbapenemase-producing Enterobacteriaceae (CRE) strains isolated from pediatric patients between January and March 2017, indicating that the blaNDM-5 gene has spread to children. All 22 isolates, including 16 Klebsiella pneumoniae strains, four Klebsiella aerogenes strains, and two Escherichia coli strains, showed significantly high resistance to β-lactam antibiotics (except aztreonam) but remained susceptible to tigecycline and colistin. K. pneumoniae and K. aerogenes strains were respectively defined as homologous clonal isolates by pulsed-field gel electrophoresis (PFGE). Multilocus sequence typing (MLST) results confirmed the genetic relatedness with all K. pneumoniae strains belonging to sequence type (ST) 48. Two E. coli isolates (ST617 and ST1236) were considered genetically unrelated. Twenty-two blaNDM-5 plasmids were positive for the IncX3 amplicon and showed almost identical profiles after digestion with HindIII and EcoRI. Four representative strains (K. pneumoniae K725, K. aerogenes CR33, E. coli Z214, and E. coli Z244) were selected for further study. Plasmids harboring blaNDM-5 showed strong stability in both clinical isolates and transconjugants, without apparent plasmid loss after 100 serial generations. S1-PFGE followed by Southern blot analysis demonstrated that the blaNDM-5 gene was located on an ∼46-kb plasmid. Plasmid sequences of pNDM-K725, pNDM-CR33, and pNDM-Z214 were almost identical but were slightly different from that of pNDM-Z244. Compared with pNDM-Z244, ΔISAba125 and partial copies of IS3000 were missing. The genetic backgrounds of the blaNDM-5 gene in four strains were slightly different from that of the typical pNDM_MGR194. This study comprehensively characterized the horizontal gene transfer of the blaNDM-5 gene among different Enterobacteriaceae isolates in pediatric patients, and the IncX3-type plasmid was responsible for the spread. IMPORTANCE The emergence of CRE strains resistant to multiple antibiotics is considered a substantial threat to human health. Therefore, all the efforts to provide a detailed molecular transmission mechanism of specific drug resistance can contribute positively to prevent the further spread of multidrug-resistant bacteria. Although the new superbug harboring blaNDM-5 has been reported in many countries, it was mostly identified among E. coli strains, and the gene transfer mechanism has not been fully recognized and studied. In this work, we identified 22 blaNDM-5-positive strains in different species of Enterobacteriaceae, including 16 Klebsiella pneumoniae strains, four Klebsiella aerogenes strains, and two Escherichia coli strains, which indicated the horizontal gene transfer of blaNDM-5 among Enterobacteriaceae strains in pediatric patients. Moreover, blaNDM-5 was located on a 46-kb IncX3 plasmid, which is possibly responsible for this widespread horizontal gene transfer. The different genetic contexts of the blaNDM-5 gene indicated some minor evolutions of the plasmid, based on the complete sequences of the blaNDM-5 plasmids. These findings are of great significance to understand the transmission mechanism of drug resistance genes, develop anti-infection treatment, and take effective infection control measures.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thi-Diem Bui ◽  
Quang-Liem Nguyen ◽  
Thi-Bich Luong ◽  
Van Thuan Le ◽  
Van-Dat Doan

In this study, Mn-doped ZnSe/ZnS core/shell quantum dots (CSQDs) were synthesized in aqueous solution using polyethylene glycol as a surface stabilizer and successfully applied in the detection of Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) for the first time. The CSQDs were conjugated with anti-E. coli antibody and anti-MRSA antibody via protein A supported by 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide hydrochloride for fluorescent labeling of the intact bacterial cells. The detection was performed for the bacterial strains cultivated in Luria-Bertani liquid medium. The obtained results indicate that E. coli O157:H7 and MRSA can be detected within 30 min at a high sensitivity of 101 CFU/mL. This labeling method based on the highly fluorescent CSQDs may have great potential for use in the food industry to check and prevent outbreaks of foodborne illness.


Author(s):  
Miladys Esther Torrenegra Alarcón ◽  
Nerlis Paola Pájaro ◽  
Glicerio León Méndez

Se evaluó la actividad antibacteriana in vitro de aceites esenciales de diferentes especiesdel género Citrus frente a cepas ATCC de Staphylococcus aureus, Staphylococcus epidermidis,Klebsiella pneumoniae, Pseudomonas aeruginosa y Escherichia coli, determinandola concentración mínima inhibitoria (CMI) y la concentración mínima bactericida(CMB). Las bacterias se replicaron en medios de agar y caldos específicos. Se determinóel momento de máxima densidad óptica (DO620) para emplearlo como tiempode incubación; luego se hicieron pruebas de evaluación de sensibilidad con la exposiciónde las cepas a concentraciones a 1000 g/mL del extracto en caldo. Para solubilizarse empleó dimetilsulfóxido (DMSO) al 1%. Posteriormente, se le determinó laconcentración mínima inhibitoria mediante metodologías de microdilución en caldoy la concentración mínima bactericida. Encontrándose una actividad de los aceitesesenciales del género Citrus, con valores de CMI ≥ 600 mg/mL frente a S. aureus,S. epidermidis, K. pneumoniae, P. aeruginosa y E. coli. En función a los resultados obtenidos,se concluye que las diferentes especies del género Citrus son consideradas comopromisorias para el control del componente bacteriano.


Sign in / Sign up

Export Citation Format

Share Document