scholarly journals Inhibition of Salmonella enterica Biofilm Formation Using Small-Molecule Adenosine Mimetics

2014 ◽  
Vol 59 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Jacob A. Koopman ◽  
Joanna M. Marshall ◽  
Aditi Bhatiya ◽  
Tadesse Eguale ◽  
Jesse J. Kwiek ◽  
...  

ABSTRACTBiofilms have been widely implicated in chronic infections and environmental persistence ofSalmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts.Salmonella entericaserovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, whileSalmonella entericaserovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries.Salmonellaregulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation byS. Typhimurium andS. Typhi. The compound was not bactericidal or bacteriostatic towardS. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms ofAcinetobacter baumanniias well. The identification of a lead compound with biofilm-inhibiting capabilities towardSalmonellaprovides a potential new avenue of therapeutic intervention againstSalmonellabiofilm formation, with applicability to biofilms of other bacterial pathogens.

2020 ◽  
Vol 88 (11) ◽  
Author(s):  
Munirah Zafar ◽  
Humera Jahan ◽  
Sulman Shafeeq ◽  
Manfred Nimtz ◽  
Lothar Jänsch ◽  
...  

ABSTRACT Upon biofilm formation, production of extracellular matrix components and alteration in physiology and metabolism allows bacteria to build up multicellular communities which can facilitate nutrient acquisition during unfavorable conditions and provide protection toward various forms of environmental stresses to individual cells. Thus, bacterial cells within biofilms become tolerant against antimicrobials and the immune system. In the present study, we evaluated the antibiofilm activity of the macrolides clarithromycin and azithromycin. Clarithromycin showed antibiofilm activity against rdar (red, dry, and rough) biofilm formation of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium ATCC 14028 (Nalr) at a 1.56 μM subinhibitory concentration in standing culture and dissolved cell aggregates at 15 μM in a microaerophilic environment, suggesting that the oxygen level affects the activity of the drug. Treatment with clarithromycin significantly decreased transcription and production of the rdar biofilm activator CsgD, with biofilm genes such as csgB and adrA to be concomitantly downregulated. Although fliA and other flagellar regulon genes were upregulated, apparent motility was downregulated. RNA sequencing showed a holistic cell response upon clarithromycin exposure, whereby not only genes involved in the biofilm-related regulatory pathways but also genes that likely contribute to intrinsic antimicrobial resistance, and the heat shock stress response were differentially regulated. Most significantly, clarithromycin exposure shifted the cells toward an apparent oxygen- and energy-depleted status, whereby the metabolism that channels into oxidative phosphorylation was downregulated, and energy gain by degradation of propane 1,2-diol, ethanolamine and l-arginine catabolism, potentially also to prevent cytosolic acidification, was upregulated. This analysis will allow the subsequent identification of novel intrinsic antimicrobial resistance determinants.


2019 ◽  
Vol 85 (17) ◽  
Author(s):  
Jeyachchandran Visvalingam ◽  
Hui Wang ◽  
Tim C. Ells ◽  
Xianqin Yang

ABSTRACT This study investigated the microbial dynamics in multispecies biofilms of Escherichia coli O157:H7 strain 1934 (O157) or Salmonella enterica serovar Typhimurium ATCC 14028 (ST) and 40 strains of meat processing surface bacteria (MPB). Biofilms of O157 or ST with/without MPB were developed on stainless steel coupons at 15°C for up to 6 days. Bacteria in suspensions (inoculum, days 2 and 6) and biofilms (days 2 and 6) were enumerated by plating. The composition of multispecies cultures was determined by 16S rRNA gene sequencing. In suspensions, levels of O157 and ST were ∼2 log higher in single-species than in multispecies cultures on both sampling days. ST was 3 log higher in single-species than in multispecies biofilms. A similar trend, though to a lesser extent, was observed for O157 in biofilms on day 2 but not on day 6. No difference (P > 0.05) in bacterial counts was noted for the two MPB-pathogen cocultures at any time during incubation. Bacterial diversity in multispecies cultures decreased with incubation time, irrespective of the pathogen or culture type. The changes in the relative abundance of MPB were similar for the two MPB-pathogen cocultures, though different interbacterial interactions were noted. Respective fractions of ST and O157 were 2.1% and 0.97% initially and then 0.10% and 0.07% on day 2, and 0.60% and 0.04% on day 6. The relative proportions of facultative anaerobes in both multispecies cultures were greater in both suspensions and biofilms than in the inoculum. Citrobacter, Hafnia, Aeromonas, and Carnobacterium predominated in biofilms but not always in the planktonic cultures. IMPORTANCE Results of this study demonstrate that Salmonella enterica serovar Typhimurium and E. coli O157:H7 can integrate into biofilms when cocultured with bacteria from meat plant processing surfaces. However, the degree of biofilm formation for both pathogens was substantially reduced in the presence of the competing microbiota, with S. Typhimurium more greatly affected than E. coli O157:H7. The expression of extracellular determinants such as curli and cellulose appears to be less important for biofilm formation of the pathogens in multispecies cultures than in monoculture. In contrast to previous reports regarding food processing surface bacteria, data collected here also demonstrate that facultative anaerobes may have a competitive edge over strict aerobes in establishing multispecies biofilms. It would be important to take into account the presence of background bacteria when evaluating the potential persistence of a pathogen in food processing facilities.


2021 ◽  
pp. 1-18
Author(s):  
Agaristi Lamprokostopoulou ◽  
Ute Römling

Within the last 60 years, microbiological research has challenged many dogmas such as bacteria being unicellular microorganisms directed by nutrient sources; these investigations produced new dogmas such as cyclic diguanylate monophosphate (cyclic di-GMP) second messenger signaling as a ubiquitous regulator of the fundamental sessility/motility lifestyle switch on the single-cell level. Successive investigations have not yet challenged this view; however, the complexity of cyclic di-GMP as an intracellular bacterial signal, and, less explored, as an extracellular signaling molecule in combination with the conformational flexibility of the molecule, provides endless opportunities for cross-kingdom interactions. Cyclic di-GMP-directed microbial biofilms commonly stimulate the immune system on a lower level, whereas host-sensed cyclic di-GMP broadly stimulates the innate and adaptive immune responses. Furthermore, while the intracellular second messenger cyclic di-GMP signaling promotes bacterial biofilm formation and chronic infections, oppositely, <i>Salmonella</i> Typhimurium cellulose biofilm inside immune cells is not endorsed. These observations only touch on the complexity of the interaction of biofilm microbial cells with its host. In this review, we describe the Yin and Yang interactive concepts of biofilm formation and cyclic di-GMP signaling using <i>S</i>. Typhimurium as an example.


2017 ◽  
Vol 84 (5) ◽  
Author(s):  
Anice Sabag-Daigle ◽  
Jikang Wu ◽  
Mikayla A. Borton ◽  
Anindita Sengupta ◽  
Venkat Gopalan ◽  
...  

ABSTRACTSalmonella entericaserovar Typhimurium is the only organism demonstrated to utilize fructose-asparagine (F-Asn) as a source of carbon and nitrogen. In this report, we first used a bioinformatics approach to identify other microorganisms that encode homologs of theSalmonellaF-Asn utilization enzymes FraB (deglycase), FraD (kinase), and FraE (asparaginase). These candidate organisms were then tested with up to four different methods to confirm their ability to utilize F-Asn. The easiest and most broadly applicable method utilized a biological toxicity assay, which is based on the observation that F-Asn is toxic to aSalmonella fraBmutant. Candidate organisms were grown in a rich medium containing F-Asn, and depletion of F-Asn from the medium was inferred by the growth of aSalmonella fraBmutant in that same medium. For select organisms, the toxicity assay was cross-validated by direct mass spectrometry-aided measurement of F-Asn in the spent-culture media and through demonstration of FraB and FraD enzyme activity in cellular extracts. For prototrophs, F-Asn utilization was additionally confirmed by growth in a minimal medium containing F-Asn as the sole carbon source. Collectively, these studies established thatClostridiumbolteae,Clostridium acetobutylicum, andClostridium clostridioformecan utilize F-Asn, butClostridium difficilecannot;Klebsiella oxytocaand someKlebsiella pneumoniaesubspecies can utilize F-Asn; and someCitrobacter rodentiumandCitrobacter freundiistrains can also utilize F-Asn. WithinSalmonella enterica, the host-adapted serovars Typhi and Paratyphi A have lost the ability to utilize F-Asn.IMPORTANCEFructose-asparagine (F-Asn) is a precursor to acrylamide that is found in human foods, and it is also a nutrient source forSalmonella enterica, a foodborne pathogen. Here, we determined that among the normal intestinal microbiota, there are species ofClostridiumthat encode the enzymes required for F-Asn utilization. Using complementary experimental approaches, we have confirmed that three members ofClostridium, two members ofKlebsiella, and two members ofCitrobactercan indeed utilize F-Asn. TheClostridiumspp. likely compete withSalmonellafor F-Asn in the gut and contribute to competitive exclusion. FraB, one of the enzymes in the F-Asn utilization pathway, is a potential drug target because inhibition of this enzyme leads to the accumulation of a toxic metabolite that inhibits the growth ofSalmonellaspecies. This study identifies the potential off-target organisms that need to be considered when developing therapeutics directed at FraB.


2012 ◽  
Vol 56 (10) ◽  
pp. 5202-5211 ◽  
Author(s):  
Karthik Sambanthamoorthy ◽  
Rudolph E. Sloup ◽  
Vijay Parashar ◽  
Joshua M. Smith ◽  
Eric E. Kim ◽  
...  

ABSTRACTBacterial biofilm formation is responsible for numerous chronic infections, causing a severe health burden. Many of these infections cannot be resolved, as bacteria in biofilms are resistant to the host's immune defenses and antibiotic therapy. New strategies to treat biofilm-based infections are critically needed. Cyclic di-GMP (c-di-GMP) is a widely conserved second-messenger signal essential for biofilm formation. As this signaling system is found only in bacteria, it is an attractive target for the development of new antibiofilm interventions. Here, we describe the results of a high-throughput screen to identify small-molecule inhibitors of diguanylate cyclase (DGC) enzymes that synthesize c-di-GMP. We report seven small molecules that antagonize these enzymes and inhibit biofilm formation byVibrio cholerae. Moreover, two of these compounds significantly reduce the total concentration of c-di-GMP inV. cholerae, one of which also inhibits biofilm formation byPseudomonas aeruginosain a continuous-flow system. These molecules represent the first compounds described that are able to inhibit DGC activity to prevent biofilm formation.


2012 ◽  
Vol 79 (4) ◽  
pp. 1393-1395 ◽  
Author(s):  
Llinos G. Harris ◽  
Yamni Nigam ◽  
James Sawyer ◽  
Dietrich Mack ◽  
David I. Pritchard

ABSTRACTStaphylococcus aureusandStaphylococcus epidermidisbiofilms cause chronic infections due to their ability to form biofilms. The excretions/secretions ofLucilia sericatalarvae (maggots) have effective activity for debridement and disruption of bacterial biofilms. In this paper, we demonstrate how chymotrypsin derived from maggot excretions/secretions disrupts protein-dependent bacterial biofilm formation mechanisms.


2012 ◽  
Vol 78 (15) ◽  
pp. 5424-5431 ◽  
Author(s):  
Anice Sabag-Daigle ◽  
Jitesh A. Soares ◽  
Jenée N. Smith ◽  
Mohamed E. Elmasry ◽  
Brian M. M. Ahmer

ABSTRACTIn this study, we tested the hypothesis that the SdiA proteins ofEscherichia coliandSalmonella entericaserovar Typhimurium respond to indole. While indole was found to have effects on gene expression and biofilm formation, these effects were notsdiAdependent. However, high concentrations of indole did inhibitN-acyl-l-homoserine lactone (AHL) sensing by SdiA. We conclude that SdiA does not respond to indole but indole can inhibit SdiA activity inE. coliandSalmonella.


2015 ◽  
Vol 84 (1) ◽  
pp. 375-384 ◽  
Author(s):  
Shalhevet Azriel ◽  
Alina Goren ◽  
Galia Rahav ◽  
Ohad Gal-Mor

Salmonella entericaserovar Typhimurium is a facultative intracellular human and animal bacterial pathogen posing a major threat to public health worldwide.Salmonellapathogenicity requires complex coordination of multiple physiological and virulence pathways. DksA is a conserved Gram-negative regulator that belongs to a distinct group of transcription factors that bind directly to the RNA polymerase secondary channel, potentiating the effect of the signaling molecule ppGpp during a stringent response. Here, we established that inS.Typhimurium,dksAis induced during the logarithmic phase and DksA is essential for growth in minimal defined medium and plays an important role in motility and biofilm formation. Furthermore, we determined that DksA positively regulates theSalmonellapathogenicity island 1 and motility-chemotaxis genes and is necessary forS.Typhimurium invasion of human epithelial cells and uptake by macrophages. In contrast, DksA was found to be dispensable forS.Typhimurium host cell adhesion. Finally, using the colitis mouse model, we found thatdksAis spatially induced at the midcecum during the early stage of the infection and required for gastrointestinal colonization and systemic infectionin vivo. Taken together, these data indicate that the ancestral stringent response regulator DksA coordinates various physiological and virulenceS.Typhimurium programs and therefore is a key virulence regulator ofSalmonella.


2013 ◽  
Vol 81 (10) ◽  
pp. 3770-3780 ◽  
Author(s):  
Geoffrey Gonzalez-Escobedo ◽  
John S. Gunn

ABSTRACTSalmonellaspp. are able to form biofilms on abiotic and biotic surfaces.In vivostudies in our laboratory have shown thatSalmonellacan form biofilms on the surfaces of cholesterol gallstones in the gallbladders of mice and human carriers. Biofilm formation on gallstones has been demonstrated to be a mechanism of persistence. The purpose of this work was to identify and evaluateSalmonellasp. cholesterol-dependent biofilm factors. Differential gene expression analysis between biofilms on glass or cholesterol-coated surfaces and subsequent quantitative real-time PCR (qRT-PCR) revealed that type 1 fimbria structural genes and a gene encoding a putative outer membrane protein (ycfR) were specifically upregulated inSalmonella entericaserovar Typhimurium biofilms grown on cholesterol-coated surfaces. Spatiotemporal expression ofycfRand FimA verified their regulation during biofilm development on cholesterol-coated surfaces. Surprisingly, confocal and scanning electron microscopy demonstrated that a mutant of type 1 fimbria structural genes (ΔfimAICDHF) and aycfRmutant showed increased biofilm formation on cholesterol-coated surfaces.In vivoexperiments usingNramp1+/+mice harboring gallstones showed that only the ΔycfRmutant formed extensive biofilms on mouse gallstones at 7 and 21 days postinfection; ΔfimAICDHFwas not observed on gallstone surfaces after the 7-day-postinfection time point. These data suggest that inSalmonellaspp., wild-type type 1 fimbriae are important for attachment to and/or persistence on gallstones at later points of chronic infection, whereas YcfR may represent a specific potential natural inhibitor of initial biofilm formation on gallstones.


2011 ◽  
Vol 79 (11) ◽  
pp. 4342-4352 ◽  
Author(s):  
Dhaarini Raghunathan ◽  
Timothy J. Wells ◽  
Faye C. Morris ◽  
Robert K. Shaw ◽  
Saeeda Bobat ◽  
...  

ABSTRACTSalmonella entericais a major cause of morbidity worldwide and mortality in children and immunocompromised individuals in sub-Saharan Africa. Outer membrane proteins ofSalmonellaare of significance because they are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA, a purported trimeric autotransporter adhesin ofSalmonella entericaserovar Typhimurium, were examined. We demonstrated that SadA is exposed on theSalmonellacell surfacein vitroandin vivoduring infection of mice. Expression of SadA resulted in cell aggregation, biofilm formation, and increased adhesion to human intestinal Caco-2 epithelial cells. Immunization of mice with folded, full-length, purified SadA elicited an IgG response which provided limited protection against bacterial challenge. When anti-SadA IgG titers were enhanced by administering alum-precipitated protein, a modest additional protection was afforded. Therefore, despite SadA having pleiotropic functions, it is not a dominant, protective antigen for antibody-mediated protection againstSalmonella.


Sign in / Sign up

Export Citation Format

Share Document