scholarly journals Antimicrobial and Biophysical Properties of Surfactant Supplemented with an Antimicrobial Peptide for Treatment of Bacterial Pneumonia

2015 ◽  
Vol 59 (6) ◽  
pp. 3075-3083 ◽  
Author(s):  
Brandon J. H. Banaschewski ◽  
Edwin J. A. Veldhuizen ◽  
Eleonora Keating ◽  
Henk P. Haagsman ◽  
Yi Y. Zuo ◽  
...  

ABSTRACTAntibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a “perfect storm” for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistantStaphylococcus aureusandPseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based onin vitroassays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia.

Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 327 ◽  
Author(s):  
Mariana Espinosa-Valdés ◽  
Sara Borbolla-Alvarez ◽  
Ana Delgado-Espinosa ◽  
Juan Sánchez-Tejeda ◽  
Anabelle Cerón-Nava ◽  
...  

Infection from multidrug resistant bacteria has become a growing health concern worldwide, increasing the need for developing new antibacterial agents. Among the strategies that have been studied, biofilm inhibitors have acquired relevance as a potential source of drugs that could act as a complement for current and new antibacterial therapies. Based on the structure of 2-alkyl-3-hydroxy-4-quinolone and N-acylhomoserine lactone, molecules that act as mediators of quorum sensing and biofilm formation in Pseudomonas aeruginosa, we designed, prepared, and evaluated the biofilm inhibition properties of long chain amide derivatives of 2-amino-4-quinolone in Staphylococcus aureus and P. aeruginosa. All compounds had higher biofilm inhibition activity in P. aeruginosa than in S. aureus. Particularly, compounds with an alkyl chain of 12 carbons exhibited the highest inhibition of biofilm formation. Docking scores and molecular dynamics simulations of the complexes of the tested compounds within the active sites of proteins related to quorum sensing had good correlation with the experimental results, suggesting the diminution of biofilm formation induced by these compounds could be related to the inhibition of these proteins.


2013 ◽  
Vol 79 (19) ◽  
pp. 6110-6116 ◽  
Author(s):  
Zeinab Hosseinidoust ◽  
Theo G. M. van de Ven ◽  
Nathalie Tufenkji

ABSTRACTThe rapid increase in the emergence of antibiotic-resistant bacteria has attracted attention to bacteriophages for treating and preventing bacterial infections. Bacteriophages can drive the diversification ofPseudomonas aeruginosa, giving rise to phage-resistant variants with different phenotypes from their ancestral hosts. In this study, we sought to investigate the effect of phage resistance on cytotoxicity of host populations toward cultured mammalian cells. The library of phage-resistantP. aeruginosaPAO1 variants used was developed previously via experimental evolution of an isogenic host population using phages PP7 and E79. Our results presented herein indicate that the phage-resistant variants developed in a heterogeneous phage environment exhibit a greater ability to impede metabolic action of cultured human keratinocytes and have a greater tendency to cause membrane damage even though they cannot invade the cells in large numbers. They also show a heightened resistance to phagocytosis by model murine macrophages. Furthermore, all isolates produced higher levels of at least one of the secreted virulence factors, namely, total proteases, elastase, phospholipase C, and hemolysins. Reverse transcription-quantitative PCR (RT-qPCR) revealed upregulation in the transcription of a number of genes associated with virulence ofP. aeruginosafor the phage-resistant variants. The results of this study indicate a significant change in thein vitrovirulence ofP. aeruginosafollowing phage predation and highlight the need for caution in the selection and design of phages and phage cocktails for therapeutic use.


2012 ◽  
Vol 78 (16) ◽  
pp. 5646-5652 ◽  
Author(s):  
Alex R. Hall ◽  
Daniel De Vos ◽  
Ville-Petri Friman ◽  
Jean-Paul Pirnay ◽  
Angus Buckling

ABSTRACTInterest in using bacteriophages to treat bacterial infections (phage therapy) is growing, but there have been few experiments comparing the effects of different treatment strategies on both bacterial densities and resistance evolution. While it is established that multiphage therapy is typically more effective than the application of a single phage type, it is not clear if it is best to apply phages simultaneously or sequentially. We tried single- and multiphage therapy againstPseudomonas aeruginosaPAO1in vitro, using different combinations of phages either simultaneously or sequentially. Across different phage combinations, simultaneous application was consistently equal or superior to sequential application in terms of reducing bacterial population density, and there was no difference (on average) in terms of minimizing resistance. Phage-resistant bacteria emerged in all experimental treatments and incurred significant fitness costs, expressed as reduced growth rate in the absence of phages. Finally, phage therapy increased the life span of wax moth larvae infected withP. aeruginosa, and a phage cocktail was the most effective short-term treatment. When the ratio of phages to bacteria was very high, phage cocktails cured otherwise lethal infections. These results suggest that while adding all available phages simultaneously tends to be the most successful short-term strategy, there are sequential strategies that are equally effective and potentially better over longer time scales.


2014 ◽  
Vol 59 (3) ◽  
pp. 1620-1626 ◽  
Author(s):  
Osmar N. Silva ◽  
Isabel C. M. Fensterseifer ◽  
Elaine A. Rodrigues ◽  
Hortência H. S. Holanda ◽  
Natasha R. F. Novaes ◽  
...  

ABSTRACTThe rapid increase in the incidence of multidrug-resistant infections today has led to enormous interest in antimicrobial peptides (AMPs) as suitable compounds for developing unusual antibiotics. In this study, clavanin A, an antimicrobial peptide previously isolated from the marine tunicateStyela clava, was selected as a purposeful molecule that could be used in controlling infection and further synthesized. Clavanin A wasin vitroevaluated againstStaphylococcus aureusandEscherichia colias well as toward L929 mouse fibroblasts and skin primary cells (SPCs). Moreover, this peptide was challenged here in anin vivowound and sepsis model, and the immune response was also analyzed. Despite displaying clearin vitroantimicrobial activity toward Gram-positive and -negative bacteria, clavanin A showed no cytotoxic activities against mammalian cells, and in acute toxicity tests, no adverse reaction was observed at any of the concentrations. Moreover, clavanin A significantly reduced theS. aureusCFU in an experimental wound model. This peptide also reduced the mortality of mice infected withE. coliandS. aureusby 80% compared with that of control animals (treated with phosphate-buffered saline [PBS]): these data suggest that clavanin A prevents the start of sepsis and thereby reduces mortality. These data suggest that clavanin A is an AMP that could improve the development of novel peptide-based strategies for the treatment of wound and sepsis infections.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Zhaojun Zheng ◽  
Nagendran Tharmalingam ◽  
Qingzhong Liu ◽  
Elamparithi Jayamani ◽  
Wooseong Kim ◽  
...  

ABSTRACT The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pathogen Pseudomonas aeruginosa. The peptide showed little hemolytic activity and toxicity toward mammalian cells, and the MICs against most clinical P. aeruginosa isolates were 32 to 64 μg/ml, and its MICs versus other Gram-negative bacteria were 2 to 32 μg/ml. Importantly, cecropin A2 demonstrated synergistic activity against P. aeruginosa when combined with tetracycline, reducing the MICs of both agents by 8-fold. The combination was also effective in vivo in the P. aeruginosa/Galleria mellonella model (P < 0.001). We found that cecropin A2 bound to P. aeruginosa lipopolysaccharides, permeabilized the membrane, and interacted with the bacterial genomic DNA, thus facilitating the translocation of tetracycline into the cytoplasm. In summary, the combination of cecropin A2 and tetracycline demonstrated synergistic antibacterial activity against P. aeruginosa in vitro and in vivo, offering an alternative approach for the treatment of P. aeruginosa infections.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Ying Sun ◽  
Xueyuan Liao ◽  
Zhigang Huang ◽  
Yaliu Xie ◽  
Yanbin Liu ◽  
...  

ABSTRACT This study aimed to evaluate the antimicrobial activity of the novel monosulfactam 0073 against multidrug-resistant Gram-negative bacteria in vitro and in vivo and to characterize the mechanisms underlying 0073 activity. The in vitro activities of 0073, aztreonam, and the combination with avibactam were assessed by MIC and time-kill assays. The safety of 0073 was evaluated using 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and acute toxicity assays. Murine thigh infection and pneumonia models were employed to define in vivo efficacy. A penicillin-binding protein (PBP) competition assay and confocal microscopy were conducted. The inhibitory action of 0073 against β-lactamases was evaluated by the half-maximal inhibitory concentration (IC50), and resistance development was evaluated via serial passage. The monosulfactam 0073 showed promising antimicrobial activity against Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates producing metallo-β-lactamases (MBLs) and serine β-lactamases. In preliminary experiments, compound 0073 exhibited safety both in vitro and in vivo. In the murine thigh infection model and the pneumonia models in which infection was induced by P. aeruginosa and Klebsiella pneumoniae, 0073 significantly reduced the bacterial burden. Compound 0073 targeted several PBPs and exerted inhibitory effects against some serine β-lactamases. Finally, 0073 showed a reduced propensity for resistance selection compared with that of aztreonam. The novel monosulfactam 0073 exhibited increased activity against β-lactamase-producing Gram-negative organisms compared with the activity of aztreonam and showed good safety profiles both in vitro and in vivo. The underlying mechanisms may be attributed to the affinity of 0073 for several PBPs and its inhibitory activity against some serine β-lactamases. These data indicate that 0073 represents a potential treatment for infections caused by β-lactamase-producing multidrug-resistant bacteria.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Susanne Paukner ◽  
Steven P. Gelone ◽  
S. J. Ryan Arends ◽  
Robert K. Flamm ◽  
Helio S. Sader

ABSTRACTLefamulin, the first semisynthetic pleuromutilin antibacterial for intravenous and oral treatment of community-acquired bacterial pneumonia (CABP), and comparators were evaluated forin vitroactivity against a global collection of pathogens commonly causing CABP (n= 8595) from the 2015 and 2016 SENTRY Antimicrobial Surveillance Program. Lefamulin was highly active against the pathogensStreptococcus pneumoniae, including multidrug-resistant and extensively drug-resistant strains (MIC50/90for total and resistant subsets, 0.06/0.12 μg/ml; 100% inhibited at ≤1 μg/ml),Staphylococcus aureus, including methicillin-resistantStaphylococcus aureus(MRSA; both MIC50/90, 0.06/0.12 μg/ml; 99.8% and 99.6% inhibited at ≤1 μg/ml, respectively),Haemophilus influenzae(MIC50/90, 0.5/1 μg/ml; 93.8% inhibited at ≤1 μg/ml), andMoraxella catarrhalis(MIC50/90, 0.06/0.12 μg/ml; 100% inhibited at ≤0.25 μg/ml), and its activity was unaffected by resistance to other antibacterial classes.


2011 ◽  
Vol 55 (7) ◽  
pp. 3345-3356 ◽  
Author(s):  
Kelli L. Palmer ◽  
Anu Daniel ◽  
Crystal Hardy ◽  
Jared Silverman ◽  
Michael S. Gilmore

ABSTRACTThe emergence of multidrug-resistant enterococci as a leading cause of hospital-acquired infection is an important public health concern. Little is known about the genetic mechanisms by which enterococci adapt to strong selective pressures, including the use of antibiotics. The lipopeptide antibiotic daptomycin is approved to treat Gram-positive bacterial infections, including those caused by enterococci. Since its introduction, resistance to daptomycin by strains ofEnterococcus faecalisandEnterococcus faeciumhas been reported but is still rare. We evolved daptomycin-resistant strains of the multidrug-resistantE. faecalisstrain V583. Based on the availability of a fully closed genome sequence for V583, we used whole-genome resequencing to identify the mutations that became fixed over short time scales (∼2 weeks) upon serial passage in the presence of daptomycin. By comparison of the genome sequences of the three adapted strains to that of parental V583, we identified seven candidate daptomycin resistance genes and three different mutational paths to daptomycin resistance inE. faecalis. Mutations in one of the seven candidate genes (EF0631), encoding a putative cardiolipin synthase, were found in each of the adaptedE. faecalisV583 strains as well as in daptomycin-resistantE. faecalisandE. faeciumclinical isolates. Alleles of EF0631 from daptomycin-resistant strains are dominant intransand confer daptomycin resistance upon a susceptible host. These results demonstrate a mechanism of enterococcal daptomycin resistance that is genetically distinct from that occurring in staphylococci and indicate that enterococci possessing alternate EF0631 alleles are selected for during daptomycin therapy. However, our analysis ofE. faecalisclinical isolates indicates that resistance pathways independent from mutant forms of EF0631 also exist.


2011 ◽  
Vol 55 (5) ◽  
pp. 2042-2053 ◽  
Author(s):  
Roya Zoraghi ◽  
Raymond H. See ◽  
Peter Axerio-Cilies ◽  
Nag S. Kumar ◽  
Huansheng Gong ◽  
...  

ABSTRACTNovel classes of antimicrobials are needed to address the challenge of multidrug-resistant bacteria such as methicillin-resistantStaphylococcus aureus(MRSA). Using the architecture of the MRSA interactome, we identified pyruvate kinase (PK) as a potential novel drug target based upon it being a highly connected, essential hub in the MRSA interactome. Structural modeling, including X-ray crystallography, revealed discrete features of PK in MRSA, which appeared suitable for the selective targeting of the bacterial enzyme.In silicolibrary screening combined with functional enzymatic assays identified an acyl hydrazone-based compound (IS-130) as a potent MRSA PK inhibitor (50% inhibitory concentration [IC50] of 0.1 μM) with >1,000-fold selectivity over human PK isoforms. Medicinal chemistry around the IS-130 scaffold identified analogs that more potently and selectively inhibited MRSA PK enzymatic activity andS. aureusgrowthin vitro(MIC of 1 to 5 μg/ml). These novel anti-PK compounds were found to possess antistaphylococcal activity, including both MRSA and multidrug-resistantS. aureus(MDRSA) strains. These compounds also exhibited exceptional antibacterial activities against other Gram-positive genera, including enterococci and streptococci. PK lead compounds were found to be noncompetitive inhibitors and were bactericidal. In addition, mutants with significant increases in MICs were not isolated after 25 bacterial passages in culture, indicating that resistance may be slow to emerge. These findings validate the principles of network science as a powerful approach to identify novel antibacterial drug targets. They also provide a proof of principle, based upon PK in MRSA, for a research platform aimed at discovering and optimizing selective inhibitors of novel bacterial targets where human orthologs exist, as leads for anti-infective drug development.


Author(s):  
Agnieszka Magryś ◽  
Alina Olender ◽  
Dorota Tchórzewska

AbstractGarlic has long been known as the most effective plant species in treatment of bacterial infections. Considering the vast potential of garlic as a source of antimicrobial drugs, this study is aimed to evaluate the antibacterial activity of Allium sativum extracts and their interactions with selected antibiotics against drug-sensitive and multidrug-resistant isolates of emerging bacterial pathogens that are frequently found in healthcare settings. As shown by the in vitro data obtained in this study, the whole Allium sativum extract inhibited the growth of a broad range of bacteria, including multidrug-resistant strains with bactericidal or bacteriostatic effects. Depending on the organism, the susceptibility to fresh garlic extract was comparable to the conventional antibiotic gentamycin. Since the combinations of fresh garlic extract with gentamycin and ciprofloxacin inhibited both the drug sensitive and MDR bacteria, in most cases showing a synergistic or insignificant relationship, the potential use of such combinations may be beneficial, especially in inhibiting drug-resistant pathogens. The study results indicate the possibility of using garlic as e.g. a supplement used during antibiotic therapy, which may increase the effectiveness of gentamicin and ciprofloxacin.


Sign in / Sign up

Export Citation Format

Share Document