scholarly journals Antimicrobial Susceptibilities of 1,684 Streptococcus pneumoniae and 2,039 Streptococcus pyogenesIsolates and Their Ecological Relationships: Results of a 1-Year (1998–1999) Multicenter Surveillance Study in Spain

2001 ◽  
Vol 45 (12) ◽  
pp. 3334-3340 ◽  
Author(s):  
E. Pérez-Trallero ◽  
C. Fernández-Mazarrasa ◽  
C. Garcı́a-Rey ◽  
E. Bouza ◽  
L. Aguilar ◽  
...  

ABSTRACT A nationwide multicenter susceptibility surveillance study which included 1,684 Streptococcus pneumoniae and 2,039S. pyogenes isolates was carried out over 1 year in order to assess the current resistance patterns for the two most important gram-positive microorganisms responsible for community-acquired infections in Spain. Susceptibility testing was done by a broth microdilution method according to National Committee for Clinical Laboratory Standards M100-S10 interpretative criteria. ForS. pneumoniae, the prevalences of highly resistant strains were 5% for amoxicillin and amoxicillin-clavulanic acid; 7% for cefotaxime; 22% for penicillin; 31% for cefuroxime; 35% for erythromycin, clarithromycin, and azithromycin; and 42% for cefaclor. For S. pyogenes, the prevalence of erythromycin resistance was 20%. Efflux was encountered in 90% of S. pyogenes and 5% of S. pneumoniae isolates that exhibited erythromycin resistance. Erythromycin resistance was associated with clarithromycin and azithromycin in both species, regardless of phenotype. Despite the different nature of the mechanisms of resistance, a positive correlation (r = 0.612) between the two species in the prevalence of erythromycin resistance was found in site-by-site comparisons, suggesting some kind of link with antibiotic consumption. Regarding ciprofloxacin, the MIC was ≥4 μg/ml for 7% of S. pneumoniae and 3.5% of S. pyogenes isolates. Ciprofloxacin resistance (MIC, ≥4 μg/ml) was significantly (P < 0.05) associated with macrolide resistance in both S. pyogenes and S. pneumoniae and with penicillin nonsusceptibility in S. pneumoniae.

2000 ◽  
Vol 44 (1) ◽  
pp. 226-229 ◽  
Author(s):  
Francesco Barchiesi ◽  
Daniela Arzeni ◽  
Annette W. Fothergill ◽  
Luigi Falconi Di Francesco ◽  
Francesca Caselli ◽  
...  

ABSTRACT A broth microdilution method performed in accordance with the National Committee for Clinical Laboratory Standards guidelines was used to compare the in vitro activity of the new antifungal triazole SCH 56592 (SCH) to that of fluconazole (FLC), itraconazole (ITC), and ketoconazole (KETO) against 257 clinical yeast isolates. They included 220 isolates belonging to 12 different species of Candida, 15 isolates each of Cryptococcus neoformans andSaccharomyces cerevisiae, and seven isolates ofRhodotorula rubra. The MICs of SCH at which 50% (MIC50) and 90% (MIC90) of the isolates were inhibited were 0.06 and 2.0 μg/ml, respectively. In general, SCH was considerably more active than FLC (MIC50 and MIC90 of 1.0 and 64 μg/ml, respectively) and slightly more active than either ITC (MIC50 and MIC90 of 0.25 and 2.0 μg/ml, respectively) and KETO (MIC50 and MIC90 of 0.125 and 4.0 μg/ml, respectively). Our in vitro data suggest that SCH has significant potential for clinical development.


2001 ◽  
Vol 9 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Jose A. Simoes ◽  
Alla A. Aroutcheva ◽  
Susan Shott ◽  
Sebastian Faro

Objective:To determine whether metronidazole has an adverse effect on the growth ofLactobacillus.Methods:Hydrogen peroxide- and bacteriocin-producing strains ofLactobacilluswere used as test strains. Concentrations of metronidazole used ranged from 128 to 7000 μg/ml. Susceptibility to metronidazole was conducted by the broth microdilution method recommended by the National Committee for Clinical Laboratory Standards.Results:Growth ofLactobacilluswas partially inhibited at concentrations between 1000 and 4000 μg/ml (p= 0.014). Concentrations ≥ 5000 μg/ml completely inhibited growth ofLactobacillus. Concentrations between 128 and 256 μg/ml stimulated growth ofLactobacillus(p= 0.025 and 0.005, respectively). Concentrations of metronidazole between 64 and 128 μg/ml or ≥ 512 μg/ml did not have an inhibitory or a stimulatory effect on the growth ofLactobacilluscompared to the control.Conclusions:High concentration of metronidazole, i.e. between 1000 and 4000 μg/ml, partially inhibited the growth ofLactobacillus. Concentrations ≥ 5000 μg/ml completely suppressed the growth ofLactobacillus. Concentrations between ≥ 128 and ≤ 256 μg/ml stimulated the growth ofLactobacillus. Further investigation to determine the ideal concentration of metronidazole is needed in order to use the antimicrobial agent effectively in the treatment of bacterial vaginosis.


2004 ◽  
Vol 70 (4) ◽  
pp. 2398-2403 ◽  
Author(s):  
Mokhlasur Rahman ◽  
Inger Kühn ◽  
Motiur Rahman ◽  
Barbro Olsson-Liljequist ◽  
Roland Möllby

ABSTRACT We describe the ScanMIC method, a colorimetric MIC method for susceptibility testing of gram-negative fermentative bacteria. The method is a slight modification of the National Committee for Clinical Laboratory Standards (NCCLS) recommended broth microdilution method that uses a redox indicator 2,3,5-triphenyltetrazolium chloride (TTC) to enhance the estimate of bacterial growth inhibition in a microplate and a flatbed scanner to capture the microplate image. In-house software was developed to transform the microplate image into numerical values based on the amount of bacterial growth and to generate the MICs automatically. The choice of indicator was based on its low toxicity and ease of reading by scanner. We compared the ScanMIC method to the NCCLS recommended broth microdilution method with 197 coliform strains against seven antibacterial agents. The interpretative categorical agreement was obtained in 92.4% of the assays, and the agreement for MIC differences (within ±1 log2 dilution) was obtained in 96% for ScanMIC versus broth microdilution and 97% for a two-step incubation colorimetric broth microdilution versus the broth microdilution method. The method was found to be labor-saving, not to require any initial investment, and to show reliable results. Thus, the ScanMIC method could be useful for epidemiological surveys that include susceptibility testing of bacteria.


1998 ◽  
Vol 36 (3) ◽  
pp. 788-791 ◽  
Author(s):  
J. H. Jorgensen ◽  
M. L. McElmeel ◽  
S. A. Crawford

The MicroScan MICroSTREP panel is a recently marketed frozen broth microdilution panel for susceptibility testing of various streptococci, including Streptococcus pneumoniae. The panel contains 10 antimicrobial agents in cation-adjusted Mueller-Hinton broth supplemented with 3% lysed horse blood, similar in concept to the National Committee for Clinical Laboratory Standards (NCCLS) reference broth microdilution method for testing streptococci. A group of 210 isolates of S. pneumoniae were selected to include isolates with previously documented resistance to agents incorporated in the MICroSTREP panel, as well as recent invasive clinical isolates. All isolates were tested simultaneously with the MICroSTREP panel and an NCCLS reference panel whose drug concentrations were prepared to coincide with those of the MICroSTREP panel. Of the 210 isolates, 5 failed to grow in the MICroSTREP panel; 3 of those also did not grow in the reference panel. Essential agreement of MICs determined by the two methods (test MIC ± one dilution of the reference MIC) was 99.6% overall and ranged from 98.0% with chloramphenicol to 100% with penicillin, ceftriaxone, erythromycin, tetracycline, and vancomycin. There were no very major or major interpretive category errors resulting from the MICroSTREP panel tests. Minor interpretive category errors ranged from 12.2% with cefotaxime and 9.8% with ceftriaxone (due mainly to clustering of MICs for the selected strains near the breakpoints) to 0% with chloramphenicol and vancomycin. These results indicate that the MicroScan MICroSTREP frozen panels provide susceptibility results with pneumococci that are essentially equivalent to results derived by the NCCLS reference broth microdilution procedure.


2000 ◽  
Vol 44 (5) ◽  
pp. 1242-1246 ◽  
Author(s):  
Angela M. Nilius ◽  
Patti M. Raney ◽  
Dena M. Hensey-Rudloff ◽  
Weibo Wang ◽  
Qun Li ◽  
...  

ABSTRACT A-192411.29 is a novel antifungal agent derived from the structural template of the natural product echinocandin. The in vitro activity of A-192411.29 against common pathogenic yeasts was assessed by National Committee for Clinical Laboratory Standards method M27-A. It demonstrated broad-spectrum, fungicidal activity and was active against the most clinically relevant yeasts, such as Candida albicans, Candida tropicalis, and Candida glabrata, as well as less commonly encounteredCandida species; in general, its potency on a weight basis was comparable to that of amphotericin B. It maintained potent in vitro activity against Candida strains with reduced susceptibilities to fluconazole and amphotericin B. The in vitro activity of A-192411.29 against Cryptococcus neoformans was comparable to its activity against Candida spp. However, A-192411.29 did not demonstrate complete growth inhibition ofAspergillus fumigatus by the broth microdilution method used. A-192411.29 possesses an antifungal profile comparable to or better than those of fluconazole and amphotericin B against pathogenic yeasts, including strains resistant to fluconazole or amphotericin B, suggesting that it may be a therapeutically useful new antifungal drug.


2009 ◽  
Vol 20 (suppl a) ◽  
pp. 9A-19A ◽  
Author(s):  
George G Zhanel ◽  
James A Karlowsky ◽  
Mel DeCorby ◽  
Kim A Nichol ◽  
Aleksandra Wierzbowski ◽  
...  

BACKGROUND: Canadian hospitals as well as hospitals worldwide are increasingly faced with antibiotic-resistant pathogens, including multidrug-resistant (MDR) strains. OBJECTIVES: To assess the prevalence of pathogens, including the resistance genotypes of methicillin-resistantStaphylococcus aureus(MRSA), vancomycin-resistant enterococci (VRE) and extendedspectrum beta-lactamase (ESBL)-producingEscherichia coliin Canadian hospitals, as well as their antimicrobial resistance patterns. MEtHODS: Bacterial isolates were obtained between January 1, 2007, and December 31, 2007, inclusive, from patients in 12 hospitals across Canada as part of the Canadian Ward Surveillance Study (CANWARD 2007). Isolates were obtained from bacteremic, urinary, respiratory and wound specimens and underwent antimicrobial susceptibility testing. Susceptibility testing was assessed using the Clinical and Laboratory Standards Institute broth microdilution method. RESULTS: In total, 7881 isolates were recovered from clinical specimens of patients attending Canadian hospitals. The 7881 isolates were collected from respiratory (n=2306; 29.3%), blood (n=3631; 46.1%), wounds/tissue (n=617; 7.8%) and urinary (n=1327; 16.8%) specimens. The 10 most common organisms isolated from 76.5% of all clinical specimens wereE coli(21.6%), methicillin-susceptibleS aureus(13.9%),Streptococcus pneumoniae(8.9%),Pseudomonas aeruginosa(8.0%),Klebsiella pneumoniae(5.8%), MRSA (4.9%),Haemophilus influenzae(4.3%), coagulase-negative staphylococci/taphylococcus epidermidisS (4.0%),Enterococcus species(3.0%) andEnterobacter cloacae(2.1%). MRSA made up 26.0% (385 of 1480) of allS aureus(genotypically, 79.2% of MRSA were health care-associated MRSA and 19.5% were community-associated MRSA), and VRE made up 1.8% of all enterococci (62.5% of VRE had thevanA genotype). ESBLproducingE colioccurred in 3.4% ofE coliisolates. The CTX-M type was the predominant ESBL, with CTX-M-15 as the predominant genotype. With MRSA, no resistance was observed to daptomycin, linezolid, tigecycline and vancomycin, while resistance rates to other agents were: clarithromycin 91.4%, clindamycin 61.8%, fluoroquinolones 88.6% to 89.6%, and trimethoprim-sulfamethoxazole 12.2%. WithE coli, no resistance was observed to ertapenem, meropenem and tigecycline, while resistance rates to other agents were: amikacin 0.1%, cefazolin 14.2%, cefepime 2.0%, ceftriaxone 8.9%, gentamicin 10.6%, fluoroquinolones 23.6% to 24.5%, piperacillin-tazobactam 1.3% and trimethoprim-sulfamethoxazole 26.6%. Resistance rates withP aeruginosawere: amikacin 7.6%, cefepime 11.7%, gentamicin 20.8%, fluoroquinolones 23.4% to 25.1%, meropenem 8.1% and piperacillin- tazobactam 7.3%. A MDR phenotype (resistance to three or more of cefepime, piperacillin-tazobactam, meropenem, amikacin or gentamicin, and ciprofloxacin) occurred frequently inP aeruginosa(10.6%) but uncommonly inE coli(1.2%),K pneumoniae(1.5%),E cloacae(0%) orH influenzae(0%). CONCLUSIONS:E coli,S aureus(methicillin-susceptible and MRSA),S pneumoniae,P aeruginosa,K pneumoniae,H influenzaeandEnterococcusspecies are the most common isolates recovered from clinical specimens in Canadian hospitals. The prevalence of MRSA was 26.0% (of which genotypically, 19.5% was community-associated MRSA), while VRE and ESBL-producingE colioccurred in 1.8% and 3.4% of isolates, respectively. A MDR phenotype is common withP aeruginosain Canadian hospitals.


2019 ◽  
Vol 74 (Supplement_4) ◽  
pp. iv39-iv47 ◽  
Author(s):  
Alyssa R Golden ◽  
Melanie R Baxter ◽  
Ross J Davidson ◽  
Irene Martin ◽  
Walter Demczuk ◽  
...  

Abstract Objectives To compare the epidemiology and antimicrobial susceptibility patterns of Streptococcus pneumoniae collected from respiratory and blood culture samples in Canada between 2007 and 2016. Methods S. pneumoniae strains were obtained from Canadian hospitals as part of the ongoing national surveillance study, CANWARD. Isolates were serotyped using the Quellung method. Antimicrobial susceptibility testing was performed using the CLSI broth microdilution method. MDR and XDR were defined as resistance to three or more and five or more classes of antimicrobials, respectively. Results Of the 2581 S. pneumoniae isolates collected, 1685 (65.3%) and 896 (34.7%) were obtained from respiratory and blood samples, respectively. Respiratory isolates demonstrated lower rates of antimicrobial susceptibility than blood isolates to penicillin, ceftriaxone, clarithromycin, clindamycin, doxycycline and trimethoprim/sulfamethoxazole (P ≤ 0.03). From 2007 to 2016, invasive isolates demonstrated trends towards increasing penicillin susceptibility and decreasing clarithromycin susceptibility. MDR was significantly higher in respiratory S. pneumoniae compared with blood (9.1% versus 4.5%, P < 0.0001). Serotypes 11A, 16F, 19F, 23A/B/F, 34, 35B and non-typeable strains were more commonly isolated from respiratory specimens, while 4, 5, 7F, 8, 12F, 14 and 19A were more commonly invasive serotypes. Numerous serotypes, including 3 and 22F, were isolated frequently from both specimen sources. Conclusions S. pneumoniae from respiratory samples demonstrated lower antimicrobial susceptibilities and higher MDR in a greater diversity of serotypes than isolates obtained from blood. Many serotypes were associated with one specific specimen source, while others were associated with both; genetic characterization is necessary to elucidate the specific factors influencing the ability of these serotypes to commonly cause both invasive and non-invasive disease.


2000 ◽  
Vol 44 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Shuichi Tawara ◽  
Fumiaki Ikeda ◽  
Katsuyuki Maki ◽  
Yoshihiko Morishita ◽  
Kazumi Otomo ◽  
...  

ABSTRACT The in vitro antifungal activity and spectrum of FK463 were compared with those of amphotericin B, fluconazole, and itraconazole by using a broth microdilution method specified by National Committee for Clinical Laboratory Standards document M27-A (National Committee for Clinical Laboratory Standards, Wayne, Pa., 1997). FK463 exhibited broad-spectrum activity against clinically important pathogens including Candida species (MIC range, ≦0.0039 to 2 μg/ml) and Aspergillus species (MIC range, ≦0.0039 to 0.0313 μg/ml), and its MICs for such fungi were lower than those of the other antifungal agents tested. FK463 was also potently active against azole-resistant Candida albicans as well as azole-susceptible strains, and there was no cross-resistance with azoles. FK463 showed fungicidal activity against C. albicans, i.e., a 99% reduction in viability after a 24-h exposure at concentrations above 0.0156 μg/ml. The minimum fungicidal concentration (MFC) assays indicated that FK463 was fungicidal against most isolates of Candida species. In contrast, the MFCs of FK463 for A. fumigatus isolates were much higher than the MICs, indicating that its action is fungistatic against this species. FK463 had no activity against Cryptococcus neoformans,Trichosporon species, or Fusarium solani. Neither the test medium (kind and pH) nor the inoculum size greatly affected the MICs of FK463, while the addition of 4% human serum albumin increased the MICs for Candida species and A. fumigatus more than 32 times. Results from preclinical in vitro evaluations performed thus far indicate that FK463 should be a potent parenteral antifungal agent.


1998 ◽  
Vol 42 (7) ◽  
pp. 1601-1604 ◽  
Author(s):  
C. Aguilar ◽  
I. Pujol ◽  
J. Sala ◽  
J. Guarro

ABSTRACT The MICs and minimum fungicidal concentrations (MFCs) of amphotericin B, miconazole, itraconazole, ketoconazole, fluconazole, and flucytosine for 52 isolates of Paecilomyces species were evaluated by the broth microdilution method, largely based on the recommendations of the National Committee for Clinical Laboratory Standards (document M27-A). The fungal isolates tested included 16P. variotii, 11 P. lilacinus, 9 P. marquandii, 6 P. fumosoroseus, 4 P. javanicus, and 2 P. viridis isolates and 1 isolate of each of the following species: P. carneus, P. farinosus, P. fulvus, and P. niveus. The MFCs and the MICs at which 90% of isolates were inhibited (MIC90s) for the six antifungal agents were remarkably high; the MIC50s indicated that amphotericin B, miconazole, itraconazole, and ketoconazole had good activities, while fluconazole and flucytosine demonstrated poor efficacy. The ranges of the MICs were generally wider and lower than those of the MFCs. There were significant susceptibility differences among the species. All species with the exception of P. variotii were highly resistant to fluconazole and flucytosine; P. variotii was susceptible to flucytosine. Amphotericin B and the rest of the azoles showed good activity against P. variotii, while all the antifungal agents assayed showed low efficacy against P. lilacinus.


Sign in / Sign up

Export Citation Format

Share Document