Comparison of antimicrobial resistance patterns in Streptococcus pneumoniae from respiratory and blood cultures in Canadian hospitals from 2007–16

2019 ◽  
Vol 74 (Supplement_4) ◽  
pp. iv39-iv47 ◽  
Author(s):  
Alyssa R Golden ◽  
Melanie R Baxter ◽  
Ross J Davidson ◽  
Irene Martin ◽  
Walter Demczuk ◽  
...  

Abstract Objectives To compare the epidemiology and antimicrobial susceptibility patterns of Streptococcus pneumoniae collected from respiratory and blood culture samples in Canada between 2007 and 2016. Methods S. pneumoniae strains were obtained from Canadian hospitals as part of the ongoing national surveillance study, CANWARD. Isolates were serotyped using the Quellung method. Antimicrobial susceptibility testing was performed using the CLSI broth microdilution method. MDR and XDR were defined as resistance to three or more and five or more classes of antimicrobials, respectively. Results Of the 2581 S. pneumoniae isolates collected, 1685 (65.3%) and 896 (34.7%) were obtained from respiratory and blood samples, respectively. Respiratory isolates demonstrated lower rates of antimicrobial susceptibility than blood isolates to penicillin, ceftriaxone, clarithromycin, clindamycin, doxycycline and trimethoprim/sulfamethoxazole (P ≤ 0.03). From 2007 to 2016, invasive isolates demonstrated trends towards increasing penicillin susceptibility and decreasing clarithromycin susceptibility. MDR was significantly higher in respiratory S. pneumoniae compared with blood (9.1% versus 4.5%, P < 0.0001). Serotypes 11A, 16F, 19F, 23A/B/F, 34, 35B and non-typeable strains were more commonly isolated from respiratory specimens, while 4, 5, 7F, 8, 12F, 14 and 19A were more commonly invasive serotypes. Numerous serotypes, including 3 and 22F, were isolated frequently from both specimen sources. Conclusions S. pneumoniae from respiratory samples demonstrated lower antimicrobial susceptibilities and higher MDR in a greater diversity of serotypes than isolates obtained from blood. Many serotypes were associated with one specific specimen source, while others were associated with both; genetic characterization is necessary to elucidate the specific factors influencing the ability of these serotypes to commonly cause both invasive and non-invasive disease.

Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 814
Author(s):  
Patrizia Casagrande Proietti ◽  
Valentina Stefanetti ◽  
Laura Musa ◽  
Alessia Zicavo ◽  
Anna Maria Dionisi ◽  
...  

This work aimed to evaluate the antimicrobial susceptibility of 87 Salmonella Infantis strains isolated in Italy from 2016 to 2019 along the food chain of broiler meat production and in humans and to determine the genetic profiles of the strains in order to establish a possible correlation with the antimicrobial pattern. All isolates were tested by the disk diffusion method to evaluate antimicrobial susceptibility toward sixteen antimicrobials, and the broth microdilution method was used to confirm extended spectrum β-lactamase (ESBL) production. PCR and pulsed field gel electrophoresis (PFGE) were applied to characterize ESBL-encoding and AmpC β-lactamase genes and to analyze the S. Infantis strains genetic profiles respectively. S. Infantis isolates showed high prevalence of resistance, in particular toward nalidixic acid (97.7%), tetracycline (96.5%), sulphamethoxazole/trimethoprim (91%) and cefepime (72.4%). The 80.5% of isolates were ESBL, cefotaxime-resistant, carrying the blaCTX-M1 gene. The most prevalent PFGE profile was XbaI.0126 (35.6%). The remaining strains had a genetic homology from 81% to 97% with the XbaI.0126 profile. The strains belonging to these profiles were isolated from different matrices collected along the broiler food chain independently on the year and from the region and there was no correlation between the PFGE profiles and resistance patterns. We found two ESBL-producing S. Infantis strains with the same XbaI.2621 profile isolated from humans and from poultry feces, not yet reported in Italy. Our findings confirmed the diffusion of ESBL-multi drug resistant (MDR) S. Infantis along the broiler food chain and in humans and underlined the importance of continuous monitoring to control and to reduce the prevalence of this bacterium, applying a global One Health approach.


2018 ◽  
Vol 5 (1) ◽  
pp. e000293 ◽  
Author(s):  
Yoon-Hee Oh ◽  
Dong-Chan Moon ◽  
Young Ju Lee ◽  
Bang-Hun Hyun ◽  
Suk-Kyung Lim

Pasteurella multocida is one of the significant causes of respiratory infection outbreaks in the Korean pig industry. Although antimicrobial treatment is an effective strategy for controlling respiratory diseases, limited information is available regarding the antimicrobial susceptibility of the pathogens infecting Korean pigs. Therefore, in this study, we evaluated the antimicrobial resistance of P multocida against widely used antimicrobials in order to enable the selection of appropriate drugs and to evaluate any trends in resistance. A total of 454 isolates of P multocida were collected from all provinces in Korea between 2010 and 2016. Antimicrobial susceptibility of all isolates was determined using a broth microdilution method. The most frequently observed resistance was to sulphadimethoxine (76.0 per cent), followed by oxytetracycline (66.5 per cent), chlortetracycline (36.8 per cent) and florfenicol (18.5 per cent). Although no consistent increase or decrease in resistance was observed for most antimicrobials, resistance to fluoroquinolones tended to increase over the study period. A variety of resistance patterns were observed, most frequently for tetracyclines and sulphonamides. These findings could provide information enabling the selection of optimal antimicrobials for efficient treatment of pneumoniae pasteurellosis in pig farms, which would impede the emergence of antimicrobial resistance.


2001 ◽  
Vol 45 (12) ◽  
pp. 3334-3340 ◽  
Author(s):  
E. Pérez-Trallero ◽  
C. Fernández-Mazarrasa ◽  
C. Garcı́a-Rey ◽  
E. Bouza ◽  
L. Aguilar ◽  
...  

ABSTRACT A nationwide multicenter susceptibility surveillance study which included 1,684 Streptococcus pneumoniae and 2,039S. pyogenes isolates was carried out over 1 year in order to assess the current resistance patterns for the two most important gram-positive microorganisms responsible for community-acquired infections in Spain. Susceptibility testing was done by a broth microdilution method according to National Committee for Clinical Laboratory Standards M100-S10 interpretative criteria. ForS. pneumoniae, the prevalences of highly resistant strains were 5% for amoxicillin and amoxicillin-clavulanic acid; 7% for cefotaxime; 22% for penicillin; 31% for cefuroxime; 35% for erythromycin, clarithromycin, and azithromycin; and 42% for cefaclor. For S. pyogenes, the prevalence of erythromycin resistance was 20%. Efflux was encountered in 90% of S. pyogenes and 5% of S. pneumoniae isolates that exhibited erythromycin resistance. Erythromycin resistance was associated with clarithromycin and azithromycin in both species, regardless of phenotype. Despite the different nature of the mechanisms of resistance, a positive correlation (r = 0.612) between the two species in the prevalence of erythromycin resistance was found in site-by-site comparisons, suggesting some kind of link with antibiotic consumption. Regarding ciprofloxacin, the MIC was ≥4 μg/ml for 7% of S. pneumoniae and 3.5% of S. pyogenes isolates. Ciprofloxacin resistance (MIC, ≥4 μg/ml) was significantly (P < 0.05) associated with macrolide resistance in both S. pyogenes and S. pneumoniae and with penicillin nonsusceptibility in S. pneumoniae.


2022 ◽  
Vol 12 ◽  
Author(s):  
Menglan Zhou ◽  
Ziran Wang ◽  
Li Zhang ◽  
Timothy Kudinha ◽  
Haoran An ◽  
...  

Background:Streptococcus pneumoniae is an important human pathogen that can cause severe invasive pneumococcal diseases (IPDs). The aim of this multicenter study was to investigate the serotype and sequence type (ST) distribution, antimicrobial susceptibility, and virulence of S. pneumoniae strains causing IPD in China.Methods: A total of 300 invasive S. pneumoniae isolates were included in this study. The serotype, ST, and antimicrobial susceptibility of the strains, were determined by the Quellung reaction, multi-locus sequence typing (MLST) and broth microdilution method, respectively. The virulence level of the strains in the most prevalent serotypes was evaluated by a mouse sepsis model, and the expression level of well-known virulence genes was measured by RT-PCR.Results: The most common serotypes in this study were 23F, 19A, 19F, 3, and 14. The serotype coverages of PCV7, PCV10, PCV13, and PPV23 vaccines on the strain collection were 42.3, 45.3, 73.3 and 79.3%, respectively. The most common STs were ST320, ST81, ST271, ST876, and ST3173. All strains were susceptible to ertapenem, levofloxacin, moxifloxacin, linezolid, and vancomycin, but a very high proportion (&gt;95%) was resistant to macrolides and clindamycin. Based on the oral, meningitis and non-meningitis breakpoints, penicillin non-susceptible Streptococcus pneumoniae (PNSP) accounted for 67.7, 67.7 and 4.3% of the isolates, respectively. Serotype 3 strains were characterized by high virulence levels and low antimicrobial-resistance rates, while strains of serotypes 23F, 19F, 19A, and 14, exhibited low virulence and high resistance rates to antibiotics. Capsular polysaccharide and non-capsular virulence factors were collectively responsible for the virulence diversity of S. pneumoniae strains.Conclusion: Our study provides a comprehensive insight into the epidemiology and virulence diversity of S. pneumoniae strains causing IPD in China.


2005 ◽  
Vol 54 (4) ◽  
pp. 327-331 ◽  
Author(s):  
B C Denham ◽  
S C Clarke

Pneumococcal disease remains an important cause of invasive and non-invasive disease in Scotland and elsewhere. The Scottish Meningococcus and Pneumococcus Reference Laboratory receives isolates of Streptococcus pneumoniae from diagnostic laboratories around Scotland. Here, the serogroups/types and antibiotic-susceptibility patterns of invasive isolates received between 1999 and 2002 are described. There were a total of 1741 invasive isolates received, the most common serogroups/types being 14 (19.8 %), 9 (10.2 %), 6 (8.3 %), 19 (7.9 %), 23 (7.9 %), 4 (6.5 %), 8 (6.4 %), 3 (5.7 %), 1 (3.8 %), 7 (3.8 %) and 18 (3.4 %). Importantly, serotypes 7 and 8 are not represented in the 7-, 9- and 11-valent pneumococcal conjugate polysaccharide vaccines. There were 67 (3.8 %) isolates considered penicillin non-susceptible, although no penicillin resistance (MIC ⩾ 0.002 mg ml−1) was recorded. One hundred and ninety-four (11.1 %) isolates, predominantly of serotype 14, were resistant to erythromycin, and 12 (0.7 %) were resistant to ciprofloxacin. This information provides an important dataset that will prove essential prior to and during the implementation of pneumococcal conjugate vaccines in the UK.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mark E. Murphy ◽  
Eleanor Powell ◽  
Joshua Courter ◽  
Joel E. Mortensen

Abstract Background Oral beta-lactam antimicrobials are not routinely tested against Streptococcus pneumoniae due to presumed susceptibility based upon penicillin minimum inhibitory concentration (MIC) testing. Currently, Clinical and Laboratory Standards Institute provides comments to use penicillin MIC ≤0.06 to predict oral cephalosporin susceptibility. However, no guidance is provided when cefotaxime MIC is known, leading to uncertainty with interpretation. The purpose of this study was to evaluate cefotaxime and penicillin MICs and their respective correlation to oral beta-lactam categorical susceptibility patterns. Methods 249 S. pneumoniae isolates were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF) and then tested by broth microdilution method to penicillin, cefotaxime, amoxicillin, cefdinir, cefpodoxime, and cefuroxime. Results Using Clinical and Laboratory Standards Institute (CLSI) non-meningitis breakpoints for cefotaxime, 240/249 isolates were classified as susceptible. Of the cefotaxime susceptible isolates, 23% of the isolates are misrepresented as cefdinir susceptible. Amoxicillin correlated well with penicillin MIC breakpoints with only 1 discordant isolate out of 249. Conclusion The correlation between amoxicillin and penicillin creates a very reliable predictor to determine categorical susceptibility. However oral cephalosporins were not well predicted by either penicillin or cefotaxime leading to the possible risk of treatment failures. Caution should be used when transitioning to oral cephalosporins in cefotaxime susceptible isolates, especially with higher cefotaxime MICs.


2013 ◽  
Vol 34 (12) ◽  
pp. 1244-1251 ◽  
Author(s):  
Pranita D. Tamma ◽  
Gwen L. Robinson ◽  
Jeffrey S. Gerber ◽  
Jason G. Newland ◽  
Chloe M. DeLisle ◽  
...  

Objective.Antimicrobial susceptibility patterns across US pediatric healthcare institutions are unknown. A national pooled pediatric antibiogram (1) identifies nationwide trends in antimicrobial resistance, (2) allows across-hospital benchmarking, and (3) provides guidance for empirical antimicrobial regimens for institutions unable to generate pediatric antibiograms.Methods.In January 2012, a request for submission of pediatric antibiograms between 2005 and 2011 was sent to 233 US hospitals. A summary antibiogram was compiled from participating institutions to generate proportions of antimicrobial susceptibility. Temporal and regional comparisons were evaluated using χ² tests and logistic regression, respectively.Results.Of 200 institutions (85%) responding to our survey, 78 (39%) reported generating pediatric antibiograms, and 55 (71%) submitted antibiograms. Carbapenems had the highest activity against the majority of gram-negative organisms tested, but no antibiotic had more than 90% activity against Pseudomonas aeruginosa. Approximately 50% of all Staphylococcus aureus isolates were methicillin resistant. Western hospitals had significantly lower proportions of S. aureus that were methicillin resistant compared with all other regions tested. Overall, 21% of S. aureus isolates had resistance to clindamycin. Among Enterococcus faecium isolates, the prevalence of susceptibility to ampicillin (25%) and vancomycin (45%) was low but improved over time (P < .01), and 8% of E. faecium isolates were resistant to linezolid. Southern hospitals reported significantly higher prevalence of E. faecium with susceptibilities to ampicillin, vancomycin, and linezolid compared with the other 3 regions (P < .01).Conclusions.A pooled, pediatric antibiogram can identify nationwide antimicrobial resistance patterns for common pathogens and might serve as a useful tool for benchmarking resistance and informing national prescribing guidelines for children.


2007 ◽  
Vol 70 (3) ◽  
pp. 736-738 ◽  
Author(s):  
M. NORSTRÖM ◽  
G. JOHNSEN ◽  
M. HOFSHAGEN ◽  
H. THARALDSEN ◽  
H. KRUSE

Antimicrobial susceptibility in Campylobacter jejuni collected from the environment outside four broiler houses (n = 63) and from the environment inside these broiler houses (including broiler droppings) (n = 36) from May to September 2004 was studied and compared with isolates from Norwegian broilers analyzed within the frame of the Norwegian monitoring program of antimicrobial resistance in feed, food, and animals (NORM-VET) in 2004 (n = 75). The MICs of oxytetracycline, ampicillin, erythromycin, gentamicin, enrofloxacin, and nalidixic acid were obtained by the broth microdilution method VetMIC. The present study, which to our knowledge is the first Norwegian study on the occurrence of antimicrobial resistance in Campylobacter spp. from the environment of broiler houses, revealed a very low occurrence of antimicrobial resistance in C. jejuni from the broilers and broiler house environments studied. All isolates originating from the four broiler houses studied were susceptible to all the antimicrobial agents tested, except for one isolate from the outdoor environment (courtyard soil), which was resistant to oxytetracycline (MIC, 8 mg/liter). For the isolates from broilers (NORM-VET), low prevalences of resistance to oxytetracycline (1.3%) and ampicillin (4%) were observed. No quinolone resistance was observed. The results for the broiler isolates are in agreement with the earlier findings of a very low prevalence of resistance in Campylobacter from broilers in Norway, which reflects the low usage of antimicrobials in Norwegian broiler production. Furthermore, the present data are in accordance with antimicrobial susceptibility data for C. jejuni from domestically acquired human cases.


2019 ◽  
Vol 67 (4) ◽  
pp. 489-498
Author(s):  
Dolores Cid ◽  
José Francisco Fernández-Garayzábal ◽  
Chris Pinto ◽  
Lucas Domínguez ◽  
Ana Isabel Vela

Pasteurella multocida is responsible for economically important diseases in sheep and pigs. Antimicrobial susceptibility studies are essential for initiating rational and effective empirical therapy of P. multocida infections. In this study we investigated the antimicrobial susceptibility to 18 antimicrobial agents of 156 clinical isolates of P. multocida from sheep (n = 87) and pigs (n = 69) using the microdilution method. Both sheep and pig isolates exhibited low levels of resistance (≤ 15%) to ceftiofur, gentamicin, neomycin, spectinomycin, chlortetracycline, tulathromycin, florfenicol, danofloxacin, and enrofloxacin and trimethoprim/sulphamethoxazole, high resistance rates (> 15% up to 50%) to oxytetracycline, tilmicosin, and tiamulin, and very high resistance rates (> 50%) to tylosin tartrate, clindamycin, and sulphadimethoxine. However, sheep isolates exhibited significantly lower percentages of resistance and lower MIC90 values (P < 0.05) than pig isolates for most of the antimicrobials tested. In addition, sheep isolates exhibited also significantly lower phenotypic antimicrobial resistance diversity (8 resistotypes vs. 30 resistotypes). LAC-LIN-SUL-MAC was the resistotype most frequently detected in sheep (39.1%) and LIN-SUL-MAC in pig isolates (26.1%). The differences in susceptibility patterns could be influenced by the lower use of antimicrobials in the small ruminant industry compared with the pig farming industry.


Sign in / Sign up

Export Citation Format

Share Document