scholarly journals 3′,5′-Cyclic Diguanylic Acid Reduces the Virulence of Biofilm-Forming Staphylococcus aureus Strains in a Mouse Model of Mastitis Infection

2005 ◽  
Vol 49 (8) ◽  
pp. 3109-3113 ◽  
Author(s):  
Eric Brouillette ◽  
Mamoru Hyodo ◽  
Yoshihiro Hayakawa ◽  
David K. R. Karaolis ◽  
François Malouin

ABSTRACT The cyclic dinucleotide 3′,5′-cyclic diguanylic acid (c-di-GMP) is a naturally occurring small molecule that regulates important signaling systems in bacteria. We have recently shown that c-di-GMP inhibits Staphylococcus aureus biofilm formation in vitro and its adherence to HeLa cells. We now report that c-di-GMP treatment has an antimicrobial and antipathogenic activity in vivo and reduces, in a dose-dependent manner, bacterial colonization by biofilm-forming S. aureus strains in a mouse model of mastitis infection. Intramammary injections of 5 and 50 nmol of c-di-GMP decreased colonization (bacterial CFU per gram of gland) by 0.79 (P > 0.05) and 1.44 (P < 0.01) logs, respectively, whereas 200-nmol doses allowed clearance of the bacteria below the detection limit with a reduction of more than 4 logs (P < 0.001) compared to the untreated control groups. These results indicate that cyclic dinucleotides potentially represent an attractive and novel drug platform which could be used alone or in combination with other agents or drugs in the prevention, treatment, or control of infection.

2022 ◽  
Author(s):  
Jesus Augusto Vazquez-Rodriguez ◽  
Bahaa Shaqour ◽  
Clara Guarch-Perez ◽  
Emilia Choinska ◽  
Martijn Riool ◽  
...  

Biomaterial-associated infections are a major healthcare challenge as they are responsible for high disease burden in critically ill patients. In this study, we have developed drug-eluting antibacterial catheters to prevent catheter-related infections. Niclosamide (NIC), originally a well-studied antiparasitic drug, was incorporated into the polymeric matrix of thermoplastic polyurethane (TPU) via solvent casting, and catheters were fabricated using hot-melt extrusion technology. The mechanical and physicochemical properties of TPU polymers loaded with NIC were studied. NIC was released in a sustained manner from the catheters and exhibited antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis in different in vitro models. Moreover, the antibacterial efficacy of NIC-loaded catheters was validated in an in vivo biomaterial-associated infection mouse model using a methicillin-susceptible and methicillin-resistant strain of S. aureus. The released NIC from the produced catheters reduced bacterial colonization of the catheter as well as of the surrounding tissue. A sustained in vivo release of NIC from the catheters for at least 14 days was observed. In summary, the NIC-releasing hot-melt extruded catheters prevented implant colonization and reduced the bacterial colonization of peri-catheter tissue by methicillin sensitive as well as resistant S. aureus in a biomaterial-associated infection mouse model and has good prospects for preclinical development.


2020 ◽  
Author(s):  
Nurhayati Bialangi ◽  
Mohamad Adam Mustapa ◽  
Yuszda K Salimi ◽  
Weny J.A Musa ◽  
Ari Widiyantoro ◽  
...  

Abstract Background: Species A. paniculata (Burm. f.) Nees known as″ Sambiloto ″ and P. pellucida L. Kunth known as″ Suruhan ″ are mainly distributed in Indonesia and their combination was used as a traditional medicine for treating malaria diseases. However, no information appears to have evaluated the antiplasmodial potential of the two plants. This research aimed to evaluate the antiplasmodial activity of the two plants and the species P. pellucida L. Kunth alone as a source of antiplasmodial agent. Methods: In vitro test of the AP-PP and PP extracts against Pf D-10 (chloroquine-sensitive) were performed as described by Desjardins et al. An in vivo test of the PP extract in mice infected with Pb ANKA was performed using Peters´ 4-day suppressive test. Parasitemia, growth and inhibition rates were determined via Giemsa-stained smear of blood and analyzed microscopically. Survival was followed up until day 21 post-infection.Results: The increased ratio of the PP extract (20:80) exhibited significant antiplasmodial in contrast to the high ratio of the AP extract (IC50, 62.01 mg/mL). Further evaluation of the PP extract alone displayed better antiplasmodial activity with an IC50 value of 4.0 mg/mL. Furthermore, an in vivo test of the PP extract in BALB/c albino mice infected with Pb ANKA exhibited a significant chemosuppressive effect in a dose-dependent manner.Conclusion: The increased ratio of the PP extract exhibited a major contribution for their activity. The PP extract alone showed better antiplasmodial activity than the AP extract and their combination. An in vivo test confirmed the efficacy of the PP extract in mouse model.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xuxing Shen ◽  
Chao Wu ◽  
Meng Lei ◽  
Qing Yan ◽  
Haoyang Zhang ◽  
...  

AbstractCarfilzomib, a second-generation proteasome inhibitor, has significantly improved the survival rate of multiple myeloma (MM) patients, but its clinical application is still restricted by drug resistance and cardiotoxicity. Here, we identified a novel proteasome inhibitor, D395, and assessed its efficacy in treating MM as well as its cardiotoxicity at the preclinical level. The activities of purified and intracellular proteasomes were measured to determine the effect of D395 on the proteasome. CCK-8 and flow cytometry experiments were designed to evaluate the effects of D395 on cell growth and apoptosis. The effects of D395 and carfilzomib on serum enzyme activity, echocardiography features, cardiomyocyte morphology, and hERG channels were also compared. In our study, D395 was highly cytotoxic to MM cell lines and primary MM cells but not normal cells, and it was well tolerated in vivo. Similar to carfilzomib, D395 inhibited osteoclast differentiation in a dose-dependent manner. In particular, D395 exhibited lower cardiotoxicity than carfilzomib in all experiments. In conclusion, D395 is a novel irreversible proteasome inhibitor that has remarkable anti-MM activity and mild cardiotoxicity in vitro and in vivo.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2007 ◽  
Vol 53 (3) ◽  
pp. 380-390 ◽  
Author(s):  
Pious Thomas ◽  
Sima Kumari ◽  
Ganiga K. Swarna ◽  
T.K.S. Gowda

Fourteen distinct bacterial clones were isolated from surface-sterilized shoot tips (~1 cm) of papaya (Carica papaya L. ‘Surya’) planted on Murashige and Skoog (MS)-based papaya culture medium (23/50 nos.) during the 2–4 week period following in vitro culturing. These isolates were ascribed to six Gram-negative genera, namely Pantoea ( P. ananatis ), Enterobacter ( E. cloacae ), Brevundimonas ( B. aurantiaca ), Sphingomonas , Methylobacterium ( M. rhodesianum ), and Agrobacterium ( A. tumefaciens ) or two Gram-positive genera, Microbacterium ( M. esteraromaticum ) and Bacillus ( B. benzoevorans ) based on 16S rDNA sequence analysis. Pantoea ananatis was the most frequently isolated organism (70% of the cultures) followed by B. benzoevorans (13%), while others were isolated from single stocks. Bacteria-harboring in vitro cultures often showed a single organism. Pantoea, Enterobacter, and Agrobacterium spp. grew actively on MS-based normal papaya medium, while Microbacterium, Brevundimonas, Bacillus, Sphingomonas, and Methylobacterium spp. failed to grow in the absence of host tissue. Supplying MS medium with tissue extract enhanced the growth of all the organisms in a dose-dependent manner, indicating reliance of the endophyte on its host. Inoculation of papaya seeds with the endophytes (20 h at OD550 = 0.5) led to delayed germination or slow seedling growth initially. However, the inhibition was overcome by 3 months and the seedlings inoculated with Pantoea, Microbacterium, or Sphingomonas spp. displayed significantly better root and shoot growths.


2014 ◽  
Vol 26 (8) ◽  
pp. 1084 ◽  
Author(s):  
Yu-Ting Shen ◽  
Yue-Qiang Song ◽  
Xiao-Qin He ◽  
Fei Zhang ◽  
Xin Huang ◽  
...  

Meiosis produces haploid gametes for sexual reproduction. Triphenyltin chloride (TPTCL) is a highly bioaccumulated and toxic environmental oestrogen; however, its effect on oocyte meiosis remains unknown. We examined the effect of TPTCL on mouse oocyte meiotic maturation in vitro and in vivo. In vitro, TPTCL inhibited germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) in a dose-dependent manner. The spindle microtubules completely disassembled and the chromosomes condensed after oocytes were exposed to 5 or 10 μg mL–1 TPTCL. γ-Tubulin protein was abnormally localised near chromosomes rather than on the spindle poles. In vivo, mice received TPTCL by oral gavage for 10 days. The general condition of the mice deteriorated and the ovary coefficient was reduced (P < 0.05). The number of secondary and mature ovarian follicles was significantly reduced by 10 mg kg–1 TPTCL (P < 0.05). GVBD decreased in a non-significant, dose-dependent manner (P > 0.05). PBE was inhibited with 10 mg kg–1 TPTCL (P < 0.05). The spindles of in vitro and in vivo metaphase II oocytes were disassembled with 10 mg kg–1 TPTCL. These results suggest that TPTCL seriously affects meiotic maturation by disturbing cell-cycle progression, disturbing the microtubule cytoskeleton and inhibiting follicle development in mouse oocytes.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Ting-Yeu Dai ◽  
Chih-Hua Wang ◽  
Kun-Nan Chen ◽  
I-Nung Huang ◽  
Wei-Sheng Hong ◽  
...  

We assayed the effects of velvet antler (VA) of Formosan sambar deer (Cervus unicolor swinhoei) and its extracts on the anti-infective activity against pathogenicStaphylococcus aureus in vitroandin vivoin this study.In vitrodata indicated that the VA extracts stimulated the proliferation of resting splenocytes and macrophages in a dose-dependent manner up to the highest concentration used (150 μg mL−1). The production of proinflammatory cytokines (TNF-α, IL-6, IL-12) by lipoteichoic acid was significantly suppressed after being cocultured with the VA extracts in a dose-dependent manner. Animal test inS. aureus-infected mice demonstrated that the numbers of bacteria determined in the kidneys and peritoneal lavage fluid ofS. aureus-infected mice were significantly higher than those found in the same organs of mice pretreated with the VA samples. Moreover, the highly enhanced phagocytic activity of macrophages was further verified afterin vitrotreatment with the VA samples. The protective mechanisms of the VA samples might include an immune enhancer and an inflammatory cytokine suppressor.


1996 ◽  
Vol 63 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Chun W. Wong ◽  
Geoffrey O. Regester ◽  
Geoffrey L. Francis ◽  
Dennis L. Watson

SummaryStudies on the immunomodulatory activities of ruminant milk and colostral whey fractions were undertaken. By comparing with boiled colostral whey in a preliminary experiment, a putative heat-labile immunostimulatory factor for antibody responses was found to be present in ovine colostral whey. Studies were then undertaken in sheep in which the efferent prefemoral lymphatic ducts were cannulated bilaterally, and immune responses in the node were measured following subcutaneous injection in the flank fold of whey protein preparations of various purities. A significant sustained decline of efferent lymphocyte output was observed following injection with autologous crude milk whey or colostral whey preparations, but no changes were observed in interferon-gamma levels in lymph plasma. Two bovine milk whey fractions (lactoperoxidase and lactoferrin) of high purity were compared in bilaterally cannulated sheep. A transient decline over the first 6 h was seen in the efferent lymphocyte output and lymph flow rate after injection of both fractions. A significant difference was seen between the two fractions in interferongamma levels in lymph at 6 h after injection. However, no significant changes in the proportion of the various efferent lymphocyte phenotypes were seen following either treatment. Whereas both fractions showed a significant inhibitory effect in a dose-dependent manner on the proliferative response of T lymphocytes, but not B lymphocytes, to mitogenic stimulation in vitro, no similar changes were seen following in vivo stimulation with these two fractions.


2021 ◽  
Author(s):  
Fatima Amanat ◽  
Shirin Strohmeier ◽  
Wen-Hsin Lee ◽  
Sandhya Bangaru ◽  
Andrew B Ward ◽  
...  

After first emerging in December 2019 in China, severe acute respiratory syndrome 2 (SARS-CoV-2) has since caused a pandemic leading to millions of infections and deaths worldwide. Vaccines have been developed and authorized but supply of these vaccines is currently limited. With new variants of the virus now emerging and spreading globally, it is essential to develop therapeutics that are broadly protective and bind conserved epitopes in the receptor binding domain (RBD) or the whole spike of SARS-CoV-2. In this study, we have generated mouse monoclonal antibodies (mAbs) against different epitopes on the RBD and assessed binding and neutralization against authentic SARS-CoV-2. We have demonstrated that antibodies with neutralizing activity, but not non-neutralizing antibodies, lower viral titers in the lungs when administered in a prophylactic setting in vivo in a mouse challenge model. In addition, most of the mAbs cross-neutralize the B.1.351 as well as the B.1.1.7 variants in vitro.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Na Liu ◽  
Ping Chen ◽  
Xiaojun Du ◽  
Junxia Sun ◽  
Shasha Han

Abstract Background Obtusofolin is the major active ingredient of Catsia tora L., which possesses the activity of improving eyesight and protecting the optic nerve. Investigation on the interaction of obtusofolin with cytochrome P450 enzymes (CYP450s) could provide a reference for the clinical application of obtusofolin. Methods The effect of obtusofolin on the activity of CYP450s was investigated in the presence of 100 μM obtusofolin in pooled human liver microsomes (HLMs) and fitted with the Lineweaver–Burk plots to characterize the specific inhibition model and kinetic parameters. Results Obtusofolin was found to significantly inhibited the activity of CYP3A4, 2C9, and 2E1. In the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM obtusofolin, the inhibition of these CYP450s showed a dose-dependent manner with the IC50 values of 17.1 ± 0.25, 10.8 ± 0.13, and 15.5 ± 0.16 μM, respectively. The inhibition of CYP3A4 was best fitted with the non-competitive inhibition model with the Ki value of 8.82 μM. While the inhibition of CYP2C9 and 2E1 was competitive with the Ki values of 5.54 and 7.79 μM, respectively. After incubating for 0, 5, 10, 15, and 30 min, the inhibition of CYP3A4 was revealed to be time-dependent with the KI value of 4.87 μM− 1 and the Kinact value of 0.0515 min− 1. Conclusions The in vitro inhibitory effect of obtusofolin implying the potential drug-drug interaction between obtusofolin and corresponding substrates, which needs further in vivo validations.


Sign in / Sign up

Export Citation Format

Share Document