scholarly journals Product-Induced Gene Expression, a Product-Responsive Reporter Assay Used To Screen Metagenomic Libraries for Enzyme-Encoding Genes

2010 ◽  
Vol 76 (21) ◽  
pp. 7029-7035 ◽  
Author(s):  
Taku Uchiyama ◽  
Kentaro Miyazaki

ABSTRACT A reporter assay-based screening method for enzymes, which we named product-induced gene expression (PIGEX), was developed and used to screen a metagenomic library for amidases. A benzoate-responsive transcriptional activator, BenR, was placed upstream of the gene encoding green fluorescent protein and used as a sensor. Escherichia coli sensor cells carrying the benR-gfp gene cassette fluoresced in response to benzoate concentrations as low as 10 μM but were completely unresponsive to the substrate benzamide. An E. coli metagenomic library consisting of 96,000 clones was grown in 96-well format in LB medium containing benzamide. The library cells were then cocultivated with sensor cells. Eleven amidase genes were recovered from 143 fluorescent wells; eight of these genes were homologous to known bacterial amidase genes while three were novel genes. In addition to their activity toward benzamide, the enzymes were active toward various substrates, including d- and l-amino acid amides, and displayed enantioselectivity. Thus, we demonstrated that PIGEX is an effective approach for screening novel enzymes based on product detection.

2013 ◽  
Vol 80 (4) ◽  
pp. 1477-1481 ◽  
Author(s):  
Karina Klevanskaa ◽  
Nadja Bier ◽  
Kerstin Stingl ◽  
Eckhard Strauch ◽  
Stefan Hertwig

ABSTRACTAn efficient electroporation procedure forVibrio vulnificuswas designed using the new cloning vector pVv3 (3,107 bp). Transformation efficiencies up to 2 × 106transformants per μg DNA were achieved. The vector stably replicated in bothV. vulnificusandEscherichia coliand was also successfully introduced intoVibrio parahaemolyticusandVibrio cholerae. To demonstrate the suitability of the vector for molecular cloning, the green fluorescent protein (GFP) gene and thevvhBAhemolysin operon were inserted into the vector and functionally expressed inVibrioandE. coli.


2008 ◽  
Vol 414 (3) ◽  
pp. 419-429 ◽  
Author(s):  
Anja Spielvogel ◽  
Helen Findon ◽  
Herbert N. Arst ◽  
Lidia Araújo-Bazán ◽  
Patricia Hernández-Ortíz ◽  
...  

To investigate cation adaptation and homoeostasis in Aspergillus nidulans, two transcription-factor-encoding genes have been characterized. The A. nidulans orthologue crzA of the Saccharomyces cerevisiae CRZ1 gene, encoding a transcription factor mediating gene regulation by Ca2+, has been identified and deleted. The crzA deletion phenotype includes extreme sensitivity to alkaline pH, Ca2+ toxicity and aberrant morphology connected with alterations of cell-wall-related phenotypes such as reduced expression of a chitin synthase gene, chsB. A fully functional C-terminally GFP (green fluorescent protein)-tagged form of the CrzA protein is apparently excluded from nuclei in the absence of added Ca2+, but rapidly accumulates in nuclei upon exposure to Ca2+. In addition, the previously identified sltA gene, which has no identifiable homologues in yeasts, was deleted, and the resulting phenotype includes considerably enhanced toxicity by a number of cations other than Ca2+ and also by alkaline pH. Reduced expression of a homologue of the S. cerevisiae P-type ATPase Na+ pump gene ENA1 might partly explain the cation sensitivity of sltA-null strains. Up-regulation of the homologue of the S. cerevisiae vacuolar Ca2+/H+ exchanger gene VCX1 might explain the lack of Ca2+ toxicity to null-sltA mutants, whereas down-regulation of this gene might be responsible for Ca2+ toxicity to crzA-null mutants. Both crzA and sltA encode DNA-binding proteins, and the latter exerts both positive and negative gene regulation.


2015 ◽  
Vol 59 (8) ◽  
pp. 5088-5091 ◽  
Author(s):  
Muhammad Kamruzzaman ◽  
Jason D. Patterson ◽  
Shereen Shoma ◽  
Andrew N. Ginn ◽  
Sally R. Partridge ◽  
...  

ABSTRACTComparison of green fluorescent protein expression from outward-facing promoters (POUT) of ISAba1, ISEcp1, and ISAba125revealed approximate equivalence in strength, intermediate between PCS (strong) and PCWTGN-10(weak) class 1 integron promoter variants, >30-fold stronger than POUTof ISCR1, and >5 times stronger than Ptac. Consistent with its usual role, PCWTGN-10produces more mRNA from a “downstream”gfpgene transcriptionally linked to a “usual” PCWTGN-10-associated gene cassette than does POUTof ISAba1.


2012 ◽  
Vol 78 (16) ◽  
pp. 5831-5838 ◽  
Author(s):  
Yun Zhang ◽  
Xiuling Shang ◽  
Shujuan Lai ◽  
Guoqiang Zhang ◽  
Yong Liang ◽  
...  

ABSTRACTCorynebacterium glutamicumis currently used for the industrial production of a variety of biological materials. Many available inducible expression systems in this species uselac-derived promoters fromEscherichia colithat exhibit much lower levels of inducible expression and leaky basal expression. We developed an arabinose-inducible expression system that contains thel-arabinose regulator AraC, thePBADpromoter from thearaBADoperon, and thel-arabinose transporter AraE, all of which are derived fromE. coli. The level of induciblePBAD-based expression could be modulated over a wide concentration range from 0.001 to 0.4%l-arabinose. This system tightly controlled the expression of the uracil phosphoribosyltransferase without leaky expression. When the gene encoding green fluorescent protein (GFP) was under the control ofPBADpromoter, flow cytometry analysis showed that GFP was expressed in a highly homogeneous profile throughout the cell population. In contrast to the case inE. coli,PBADinduction was not significantly affected in the presence of different carbon sources inC. glutamicum, which makes it useful in fermentation applications. We used this system to regulate the expression of theodhIgene fromC. glutamicum, which encodes an inhibitor of α-oxoglutarate dehydrogenase, resulting in high levels of glutamate production (up to 13.7 mM) under biotin nonlimiting conditions. This system provides an efficient tool available for molecular biology and metabolic engineering ofC. glutamicum.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 74 ◽  
Author(s):  
Jaime H. Amorim ◽  
Monica R. Jesus ◽  
Wilson B. Luiz ◽  
Bruna F.M.M. Porchia ◽  
Rita C.C. Ferreira ◽  
...  

Shiga toxin (Stx) is considered the main virulence factor in Shiga toxin-producing Escherichia coli (STEC) infections. Previously we reported the expression of biologically active Stx by eukaryotic cells in vitro and in vivo following transfection with plasmids encoding Stx under control of the native bacterial promoter. Since stx genes are present in the genome of lysogenic bacteriophages, here we evaluated the relevance of bacteriophages during STEC infection. We used the non-pathogenic E. coli K12 strain carrying a lysogenic 933W mutant bacteriophage in which the stx operon was replaced by a gene encoding the green fluorescent protein (GFP). Tracking GFP expression using an In Vivo Imaging System (IVIS), we detected fluorescence in liver, kidney, and intestine of mice infected with the recombinant E. coli strain after treatment with ciprofloxacin, which induces the lytic replication and release of bacteriophages. In addition, we showed that chitosan, a linear polysaccharide composed of D-glucosamine residues and with a number of commercial and biomedical uses, had strong anti-bacteriophage effects, as demonstrated in vitro and in vivo. These findings bring promising perspectives for the prevention and treatment of hemolytic uremic syndrome (HUS) cases.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1325 ◽  
Author(s):  
Ke Yue ◽  
Tran Nam Trung ◽  
Yiyong Zhu ◽  
Ralf Kaldenhoff ◽  
Lei Kai

Aquaporins are important and well-studied water channel membrane proteins. However, being membrane proteins, sample preparation for functional analysis is tedious and time-consuming. In this paper, we report a new approach for the co-translational insertion of two aquaporins from Escherichia coli and Nicotiana tabacum using the CFPS system. This was done in the presence of liposomes with a modified procedure to form homogenous proteo-liposomes suitable for functional analysis of water permeability using stopped-flow spectrophotometry. Two model aquaporins, AqpZ and NtPIP2;1, were successfully incorporated into the liposome in their active forms. Shifted green fluorescent protein was fused to the C-terminal part of AqpZ to monitor its insertion and status in the lipid environment. This new fast approach offers a fast and straightforward method for the functional analysis of aquaporins in both prokaryotic and eukaryotic organisms.


2011 ◽  
Vol 55 (5) ◽  
pp. 2438-2441 ◽  
Author(s):  
Zeynep Baharoglu ◽  
Didier Mazel

ABSTRACTAntibiotic resistance development has been linked to the bacterial SOS stress response. InEscherichia coli, fluoroquinolones are known to induce SOS, whereas other antibiotics, such as aminoglycosides, tetracycline, and chloramphenicol, do not. Here we address whether various antibiotics induce SOS inVibrio cholerae. Reporter green fluorescent protein (GFP) fusions were used to measure the response of SOS-regulated promoters to subinhibitory concentrations of antibiotics. We show that unlike the situation withE. coli, all these antibiotics induce SOS inV. cholerae.


2010 ◽  
Vol 9 (9) ◽  
pp. 1398-1402 ◽  
Author(s):  
Guillermo Aguilar-Osorio ◽  
Patricia A. vanKuyk ◽  
Bernhard Seiboth ◽  
Dirk Blom ◽  
Peter S. Solomon ◽  
...  

ABSTRACT The presence of a mannitol cycle in fungi has been subject to discussion for many years. Recent studies have found no evidence for the presence of this cycle and its putative role in regenerating NADPH. However, all enzymes of the cycle could be measured in cultures of Aspergillus niger. In this study we have analyzed the localization of two enzymes from the pathway, mannitol dehydrogenase and mannitol-1-phosphate dehydrogenase, and the expression of their encoding genes in nonsporulating and sporulating cultures of A. niger. Northern analysis demonstrated that mpdA was expressed in both sporulating and nonsporulating mycelia, while expression of mtdA was expressed only in sporulating mycelium. More detailed studies using green fluorescent protein and dTomato fused to the promoters of mtdA and mpdA, respectively, demonstrated that expression of mpdA occurs in vegetative hyphae while mtdA expression occurs in conidiospores. Activity assays for MtdA and MpdA confirmed the expression data, indicating that streaming of these proteins is not likely to occur. These results confirm the absence of the putative mannitol cycle in A. niger as two of the enzymes of the cycle are not present in the same part of A. niger colonies. The results also demonstrate the existence of spore-specific genes and enzymes in A. niger.


2018 ◽  
Vol 85 (2) ◽  
Author(s):  
Shireen M. Kotay ◽  
Rodney M. Donlan ◽  
Christine Ganim ◽  
Katie Barry ◽  
Bryan E. Christensen ◽  
...  

ABSTRACT An alarming rise in hospital outbreaks implicating hand-washing sinks has led to widespread acknowledgment that sinks are a major reservoir of antibiotic-resistant pathogens in patient care areas. An earlier study using green fluorescent protein (GFP)-expressing Escherichia coli (GFP-E. coli) as a model organism demonstrated dispersal from drain biofilms in contaminated sinks. The present study further characterizes the dispersal of microorganisms from contaminated sinks. Replicate hand-washing sinks were inoculated with GFP-E. coli, and dispersion was measured using qualitative (settle plates) and quantitative (air sampling) methods. Dispersal caused by faucet water was captured with settle plates and air sampling methods when bacteria were present on the drain. In contrast, no dispersal was captured without or in between faucet events, amending an earlier theory that bacteria aerosolize from the P-trap and disperse. Numbers of dispersed GFP-E. coli cells diminished substantially within 30 minutes after faucet usage, suggesting that the organisms were associated with larger droplet-sized particles that are not suspended in the air for long periods. IMPORTANCE Among the possible environmental reservoirs in a patient care environment, sink drains are increasingly recognized as a potential reservoir to hospitalized patients of multidrug-resistant health care-associated pathogens. With increasing antimicrobial resistance limiting therapeutic options for patients, a better understanding of how pathogens disseminate from sink drains is urgently needed. Once this knowledge gap has decreased, interventions can be engineered to decrease or eliminate transmission from hospital sink drains to patients. The current study further defines the mechanisms of transmission for bacteria that colonize sink drains.


Sign in / Sign up

Export Citation Format

Share Document