scholarly journals Degradation Pathways of 2- and 4-Nitrobenzoates in Cupriavidus sp. Strain ST-14 and Construction of a Recombinant Strain, ST-14::3NBA, Capable of Degrading 3-Nitrobenzoate

2016 ◽  
Vol 82 (14) ◽  
pp. 4253-4263 ◽  
Author(s):  
Soumik Basu ◽  
Piyali Pal Chowdhury ◽  
Satamita Deb ◽  
Tapan K. Dutta

ABSTRACTStrain ST-14, characterized as a member of the genusCupriavidus, was capable of utilizing 2- and 4-nitrobenzoates individually as sole sources of carbon and energy. Biochemical studies revealed the assimilation of 2- and 4-nitrobenzoates via 3-hydroxyanthranilate and protocatechuate, respectively. Screening of a genomic fosmid library of strain ST-14 constructed inEscherichia coliidentified two gene clusters,onbandpob-pca, to be responsible for the complete degradation of 2-nitrobenzoate and protocatechuate, respectively. Additionally, a gene segment (pnb) harboring the genes for the conversion of 4-nitrobenzoate to protocatechuate was unveiled by transposome mutagenesis. Reverse transcription-PCR analysis showed the polycistronic nature of the gene clusters, and their importance in the degradation of 2- and 4-nitrobenzoates was ascertained by gene knockout analysis. Cloning and expression of the relevant pathway genes revealed the transformation of 2-nitrobenzoate to 3-hydroxyanthranilate and of 4-nitrobenzoate to protocatechuate. Finally, incorporation of functional 3-nitrobenzoate dioxygenase into strain ST-14 allowed the recombinant strain to utilize 3-nitrobenzoate via the existing protocatechuate metabolic pathway, thereby allowing the degradation of all three isomers of mononitrobenzoate by a single bacterial strain.IMPORTANCEMononitrobenzoates are toxic chemicals largely used for the production of various value-added products and enter the ecosystem through industrial wastes. Bacteria capable of degrading mononitrobenzoates are relatively limited. Unlike other contaminants, these man-made chemicals have entered the environment since the last century, and it is believed that bacteria in nature evolved not quite efficiently to assimilate these compounds; as a consequence, to date, there are only a few reports on the bacterial degradation of one or more isomers of mononitrobenzoate. In the present study, fortunately, we have been able to isolate aCupriavidussp. strain capable of assimilating both 2- and 4-nitrobenzoates as the sole carbon source. Results of the biochemical and molecular characterization of catabolic genes responsible for the degradation of mononitrobenzoates led us to manipulate a single enzymatic step, allowing the recombinant host organism to expand its catabolic potential to assimilate 3-nitrobenzoate.

2014 ◽  
Vol 80 (19) ◽  
pp. 6212-6222 ◽  
Author(s):  
Jun Min ◽  
Jun-Jie Zhang ◽  
Ning-Yi Zhou

ABSTRACTBurkholderiasp. strain SJ98 (DSM 23195) utilizes 2-chloro-4-nitrophenol (2C4NP) orpara-nitrophenol (PNP) as a sole source of carbon and energy. Here, by genetic and biochemical analyses, a 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with chloro-1,4-benzoquinone (CBQ) as an intermediate. Reverse transcription-PCR analysis showed that all of thepnpgenes in thepnpABA1CDEFcluster were located in a single operon, which is significantly different from the genetic organization of all other previously reported PNP degradation gene clusters, in which the structural genes were located in three different operons. All of the Pnp proteins were purified to homogeneity as His-tagged proteins. PnpA, a PNP 4-monooxygenase, was found to be able to catalyze the monooxygenation of 2C4NP to CBQ. PnpB, a 1,4-benzoquinone reductase, has the ability to catalyze the reduction of CBQ to chlorohydroquinone. Moreover, PnpB is also able to enhance PnpA activityin vitroin the conversion of 2C4NP to CBQ. Genetic analyses indicated thatpnpAplays an essential role in the degradation of both 2C4NP and PNP by gene knockout and complementation. In addition to being responsible for the lower pathway of PNP catabolism, PnpCD, PnpE, and PnpF were also found to be likely involved in that of 2C4NP catabolism. These results indicated that the catabolism of 2C4NP and that of PNP share the same gene cluster in strain SJ98. These findings fill a gap in our understanding of the microbial degradation of 2C4NP at the molecular and biochemical levels.


2018 ◽  
Vol 84 (7) ◽  
Author(s):  
Yudai Higuchi ◽  
Shogo Aoki ◽  
Hiroki Takenami ◽  
Naofumi Kamimura ◽  
Kenji Takahashi ◽  
...  

ABSTRACTSphingobiumsp. strain SYK-6 converts four stereoisomers of arylglycerol-β-guaiacyl ether into achiral β-hydroxypropiovanillone (HPV) via three stereospecific reaction steps. Here, we determined the HPV catabolic pathway and characterized the HPV catabolic genes involved in the first two steps of the pathway. In SYK-6 cells, HPV was oxidized to vanilloyl acetic acid (VAA) via vanilloyl acetaldehyde (VAL). The resulting VAA was further converted into vanillate through the activation of VAA by coenzyme A. A syringyl-type HPV analog, β-hydroxypropiosyringone (HPS), was also catabolized via the same pathway. SLG_12830 (hpvZ), which belongs to the glucose-methanol-choline oxidoreductase family, was isolated as the HPV-converting enzyme gene. AnhpvZmutant completely lost the ability to convert HPV and HPS, indicating thathpvZis essential for the conversion of both the substrates. HpvZ produced inEscherichia colioxidized both HPV and HPS and other 3-phenyl-1-propanol derivatives. HpvZ localized to both the cytoplasm and membrane of SYK-6 and used ubiquinone derivatives as electron acceptors. Thirteen gene products of the 23 aldehyde dehydrogenase (ALDH) genes in SYK-6 were able to oxidize VAL into VAA. Mutant analyses suggested that multiple ALDH genes, including SLG_20400, contribute to the conversion of VAL. We examined whether the genes encoding feruloyl-CoA synthetase (ferA) and feruloyl-CoA hydratase/lyase (ferBandferB2) are involved in the conversion of VAA. Only FerA exhibited activity toward VAA; however, disruption offerAdid not affect VAA conversion. These results indicate that another enzyme system is involved in VAA conversion.IMPORTANCECleavage of the β-aryl ether linkage is the most essential process in lignin biodegradation. Although the bacterial β-aryl ether cleavage pathway and catabolic genes have been well documented, there have been no reports regarding the catabolism of HPV or HPS, the products of cleavage of β-aryl ether compounds. HPV and HPS have also been found to be obtained from lignin by chemoselective catalytic oxidation by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone/tert-butyl nitrite/O2, followed by cleavage of the β-aryl ether with zinc. Therefore, value-added chemicals are expected to be produced from these compounds. In this study, we determined the SYK-6 catabolic pathways for HPV and HPS and identified the catabolic genes involved in the first two steps of the pathways. Since SYK-6 catabolizes HPV through 2-pyrone-4,6-dicarboxylate, which is a building block for functional polymers, characterization of HPV catabolism is important not only for understanding the bacterial lignin catabolic system but also for lignin utilization.


2015 ◽  
Vol 82 (5) ◽  
pp. 1401-1411 ◽  
Author(s):  
Kai Chen ◽  
Xihui Xu ◽  
Long Zhang ◽  
Zhenjiu Gou ◽  
Shunpeng Li ◽  
...  

ABSTRACTComamonasplasmids play important roles in shaping the phenotypes of their hosts and the adaptation of these hosts to changing environments, and understanding the evolutionary strategy of these plasmids is thus of great concern. In this study, the sequence of the 119-kb 3,5-dibromo-4-hydroxybenzonitrile-catabolizing plasmid pBHB fromComamonassp. strain 7D-2 was studied and compared with those of three otherComamonashaloaromatic catabolic plasmids. Incompatibility group determination based on a phylogenetic analysis of 24 backbone gene proteins, as well as TrfA, revealed that these four plasmids all belong to the IncP-1β subgroup. Comparison of the four plasmids revealed a conserved backbone region and diverse genetic-load regions. The four plasmids share a core genome consisting of 40 genes (>50% similarities) and contain 12 to 50 unique genes each, most of which are xenobiotic-catabolic genes. Two functional reductive dehalogenase gene clusters are specifically located on pBHB, showing distinctive evolution of pBHB for haloaromatics. The higher catabolic ability of thebhbA2B2cluster than thebhbABcluster may be due to the transcription levels and the character of the dehalogenase gene itself rather than that of its extracytoplasmic binding receptor gene. The plasmid pBHB is riddled with transposons and insertion sequence (IS) elements, and ISs play important roles in the evolution of pBHB. The analysis of the origin of thebhbgenes on pBHB suggested that these accessory genes evolved independently. Our work provides insights into the evolutionary strategies ofComamonasplasmids, especially into the adaptation mechanism employed by pBHB for haloaromatics.


2016 ◽  
Vol 82 (9) ◽  
pp. 2709-2717 ◽  
Author(s):  
Peng Yang ◽  
Wenjing Liu ◽  
Xuelian Cheng ◽  
Jing Wang ◽  
Qian Wang ◽  
...  

ABSTRACT5-Aminolevulinic acid (ALA), a nonprotein amino acid involved in tetrapyrrole synthesis, has been widely applied in agriculture, medicine, and food production. Many engineered metabolic pathways have been constructed; however, the production yields are still low. In this study, several 5-aminolevulinic acid synthases (ALASs) from different sources were evaluated and compared with respect to their ALA production capacities in an engineeredCorynebacterium glutamicumCgS1 strain that can accumulate succinyl-coenzyme A (CoA). A codon-optimized ALAS fromRhodobacter capsulatusSB1003 displayed the best potential. Recombinant strain CgS1/pEC-SB produced 7.6 g/liter ALA using a mineral salt medium in a fed-batch fermentation mode. Employing two-stage fermentation, 12.46 g/liter ALA was produced within 17 h, with a productivity of 0.73 g/liter/h, in recombinantC. glutamicum. Through overexpression of the heterologous nonspecific ALA exporter RhtA fromEscherichia coli, the titer was further increased to 14.7 g/liter. This indicated that strain CgS1/pEC-SB-rhtA holds attractive industrial application potential for the future.IMPORTANCEIn this study, a two-stage fermentation strategy was used for production of the value-added nonprotein amino acid 5-aminolevulinic acid from glucose and glycine in a generally recognized as safe (GRAS) host,Corynebacterium glutamicum. The ALA titer represented the highest in the literature, to our knowledge. This high production capacity, combined with the potential easy downstream processes, made the recombinant strain an attractive candidate for industrial use in the future.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Benjamin Horemans ◽  
Bart Raes ◽  
Hannelore Brocatus ◽  
Jeroen T'Syen ◽  
Caroline Rombouts ◽  
...  

ABSTRACT Aminobacter sp. strain MSH1 grows on and mineralizes the groundwater micropollutant 2,6-dichlorobenzamide (BAM) and is of interest for BAM removal in drinking water treatment plants (DWTPs). The BAM-catabolic genes in MSH1 are located on plasmid pBAM1, carrying bbdA, which encodes the conversion of BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) (BbdA+ phenotype), and plasmid pBAM2, carrying gene clusters encoding the conversion of 2,6-DCBA to tricarboxylic acid (TCA) cycle intermediates (Dcba+ phenotype). There are indications that MSH1 easily loses its BAM-catabolic phenotype. We obtained evidence that MSH1 rapidly develops a population that lacks the ability to mineralize BAM when grown on nonselective (R2B medium) and semiselective (R2B medium with BAM) media. Lack of mineralization was explained by loss of the Dcba+ phenotype and corresponding genes. The ecological significance of this instability for the use of MSH1 for BAM removal in the oligotrophic environment of DWTPs was explored in lab and pilot systems. A higher incidence of BbdA+ Dcba− MSH1 cells was also observed when MSH1 was grown as a biofilm in flow chambers under C and N starvation conditions due to growth on nonselective residual assimilable organic carbon. Similar observations were made in experiments with a pilot sand filter reactor bioaugmented with MSH1. BAM conversion to 2,6-DCBA was not affected by loss of the DCBA-catabolic genes. Our results show that MSH1 is prone to BAM-catabolic instability under the conditions occurring in a DWTP. While conversion of BAM to 2,6-DCBA remains unaffected, BAM mineralization activity is at risk, and monitoring of metabolites is warranted. IMPORTANCE Bioaugmentation of dedicated biofiltration units with bacterial strains that grow on and mineralize micropollutants was suggested as an alternative for treating micropollutant-contaminated water in drinking water treatment plants (DWTPs). Organic-pollutant-catabolic genes in bacteria are often easily lost, especially under nonselective conditions, which affects the bioaugmentation success. In this study, we provide evidence that Aminobacter sp. strain MSH1, which uses the common groundwater micropollutant 2,6-dichlorobenzamide (BAM) as a C source, shows a high frequency of loss of its BAM-mineralizing phenotype due to the loss of genes that convert 2,6-DCBA to Krebs cycle intermediates when nonselective conditions occur. Moreover, we show that catabolic-gene loss also occurs in the oligotrophic environment of DWTPs, where growth of MSH1 depends mainly on the high fluxes of low concentrations of assimilable organic carbon, and hence show the ecological relevance of catabolic instability for using strain MSH1 for BAM removal in DWTPs.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Danelle R. Weakland ◽  
Sara N. Smith ◽  
Bailey Bell ◽  
Ashootosh Tripathi ◽  
Harry L. T. Mobley

ABSTRACT Serratia marcescens is a bacterium frequently found in the environment, but over the last several decades it has evolved into a concerning clinical pathogen, causing fatal bacteremia. To establish such infections, pathogens require specific nutrients; one very limited but essential nutrient is iron. We sought to characterize the iron acquisition systems in S. marcescens isolate UMH9, which was recovered from a clinical bloodstream infection. Using RNA sequencing (RNA-seq), we identified two predicted siderophore gene clusters (cbs and sch) that were regulated by iron. Mutants were constructed to delete each iron acquisition locus individually and in conjunction, generating both single and double mutants for the putative siderophore systems. Mutants lacking the sch gene cluster lost their iron-chelating ability as quantified by the chrome azurol S (CAS) assay, whereas the cbs mutant retained wild-type activity. Mass spectrometry-based analysis identified the chelating siderophore to be serratiochelin, a siderophore previously identified in Serratia plymuthica. Serratiochelin-producing mutants also displayed a decreased growth rate under iron-limited conditions created by dipyridyl added to LB medium. Additionally, mutants lacking serratiochelin were significantly outcompeted during cochallenge with wild-type UMH9 in the kidneys and spleen after inoculation via the tail vein in a bacteremia mouse model. This result was further confirmed by an independent challenge, suggesting that serratiochelin is required for full S. marcescens pathogenesis in the bloodstream. Nine other clinical isolates have at least 90% protein identity to the UMH9 serratiochelin system; therefore, our results are broadly applicable to emerging clinical isolates of S. marcescens causing bacteremia.


2020 ◽  
Vol 47 (5) ◽  
pp. 599-617
Author(s):  
Fernando Bermejo ◽  
Eladio Febrero ◽  
Andre Fernandes Tomon Avelino

PurposeThe purpose of this study is to provide broader understanding of the significant role that the pension system has in the Spanish economy by estimating the sectoral production, employment and income sustained by pensioners' consumption.Design/methodology/approachBased on input–output tables by the World Input–Output Database and consumption data from the Household Budget Survey by the Spanish Statistical Office, a demoeconomic model is applied to quantify the direct impacts, indirect impacts from interindustry links and induced impacts from income–consumption connections over a nine-year period (2006–2014). Then, the factors driving the evolution of total output, employment and value added during such period have been examined by using structural decomposition analysis.FindingsThe growing participation of consumption by pensioner households in final demand had proven crucial during the 2008 crisis to alleviate the negative trend in production and employment derived from the collapse in consumption suffered by the rest of households.Practical implicationsDetermining the underlying factors driving changes in both employment and income during the 2008 crisis can be of interest in political decision-making on the sustainability of the Spanish pension system.Social implicationsThe results of estimating both the employment and income supported by pensioners' consumption reveal the significant stabilizing effect of the public spending on pensions, particularly during the 2008 crisis.Originality/valueThe current Spanish approach of attaining the pension system sustainability by merely reducing social protection costs ignores the adverse consequences of a lower pensioners' demand. This paper addresses an alternative view in which pension spending is not considered a burden on economic growth but rather a means of improving the level of production and employment.Peer reviewThe peer review history for this article is available at: https://publons.com/publon/10.1108/IJSE-01-2019-0047


2017 ◽  
Vol 47 (2) ◽  
pp. 250-264 ◽  
Author(s):  
Chulatep Senivongse ◽  
Alex Bennet ◽  
Stefania Mariano

Purpose The purpose of this paper is to demonstrate the value of using a systematic literature review to develop an integrated framework for information and knowledge management systems. Design/methodology/approach First, the systematic literature review method is introduced, differentiating it from traditional literature reviews in terms of value-added and limitations. Second, this methodology is used in a research application focused on absorptive capacity internal capabilities with regard to the processes of acquisition, assimilation, transformation and exploitation. Third, an integrated framework for information and knowledge management systems is developed from this application. Findings The systematic literature review approach provides a rigor that can assist in reducing researcher bias while simultaneously enabling the definition of a precise scope of review, with a clear explanation of selection criteria with the objective to find and review all the studies that are relevant to the search definitions. As a research method, it effectively supports a qualitative, quantitative or mixed methodology. Research limitations/implications This methodology was applied to one specific area of research. Specific limitations include the availability of articles in subscribed databases and the analytical capabilities of the tools used for text mining and analytics. Originality/value This paper demonstrates the usefulness of the systematic literature review methodology in developing an integrated framework for analysis.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3052
Author(s):  
Diego Cardoza ◽  
Inmaculada Romero ◽  
Teresa Martínez ◽  
Encarnación Ruiz ◽  
Francisco J. Gallego ◽  
...  

A biorefinery integrated process based on lignocellulosic feedstock is especially interesting in rural areas with a high density of agricultural and agro-industrial wastes, which is the case for olive crop areas and their associated industries. In the region of Andalusia, in the south of Spain, the provinces of Jaén, Córdoba and Seville accumulate more than 70% of the olive wastes generated in Spain. Therefore, the valorisation of these wastes is a matter of interest from both an environmental and a social point of view. The olive biorefinery involves a multi-product process from different raw materials: olive leaves, exhausted olive pomace, olive stones and olive tree pruning residues. Biorefinery processes associated with these wastes would allow their valorisation to produce bioenergy and high value-added renewable products. In this work, using geographic information system tools, the biomass from olive crop fields, mills and olive pomace-extracting industries, where these wastes are generated, was determined and quantified in the study area. In addition, the vulnerability of the territory was evaluated through an environmental and territorial analysis that allowed for the determination of the reception capacity of the study area. Then, information layers corresponding to the availability of the four biomass wastes, and layers corresponding to the environmental fragility of the study area were overlapped and they resulted in an overall map. This made it possible to identify the best areas for the implementation of the biorefineries based on olive-derived biomass. Finally, as an example, three zones were selected for this purpose. These locations corresponded to low fragility areas with a high availability of biomass (more than 300,000 tons/year) in a 30 km radius, which would ensure the biomass supply.


2015 ◽  
Vol 4 (3) ◽  
pp. 200-212 ◽  
Author(s):  
Ann Darwin

Purpose – The purpose of this paper is to discuss the challenges and obstacles encountered in the implementation of a mentoring program for Master of Business Administration (MBA) students at the University of South Australia (UniSA) Business School. The paper starts with an exploration into the need for a mentoring program, the trial and subsequent four years of implementation. The paper also explores the network model of mentoring and the reasons why this, rather than a more traditional model, was chosen for the program’s implementation. Design/methodology/approach – This exploratory case study uses data from over 600 students and their alumni mentors over a five-year period to evaluate and improve the program as well as cultivating a critical community of adult learners. Findings – Feedback from students indicates that the mentoring program is regarded by most as a value-added feature of their early learning as it offers support, if and when it is required, from those who have been there before. Research limitations/implications – Results are limited to one institution. However, as research into mentoring for higher education students is thin on the ground, this study contributes to our understanding of the positive impacts of mentoring on student success. Practical implications – This paper emphasizes the importance of business leaders giving back to their alma mater through mentoring current MBA students. It shows how mentoring can support learning and management development. Originality/value – This is an original study which explores ways to increase the learning of higher education students for positive social outcomes.


Sign in / Sign up

Export Citation Format

Share Document