scholarly journals Fish Skin and Gut Microbiomes Show Contrasting Signatures of Host Species and Habitat

2020 ◽  
Vol 86 (16) ◽  
Author(s):  
François-Étienne Sylvain ◽  
Aleicia Holland ◽  
Sidki Bouslama ◽  
Émie Audet-Gilbert ◽  
Camille Lavoie ◽  
...  

ABSTRACT Teleost fish represent an invaluable repertoire of host species to study the factors shaping animal-associated microbiomes. Several studies have shown that the phylogenetic structure of the fish gut microbiome is driven by species-specific (e.g., host ancestry, genotype, or diet) and habitat-specific (e.g., hydrochemical parameters and bacterioplankton composition) factors. However, our understanding of other host-associated microbial niches, such as the skin mucus microbiome, remains limited. The goal of our study was to explore simultaneously the phylogenetic structure of the fish skin mucus and gut microbiome and compare the effect of species- and habitat-specific drivers on the structure of microbial communities in both tissues. We sampled 114 wild fish from 6 populations of 3 ecologically and phylogenetically contrasting Amazonian teleost species. Water samples were collected at each site, and 10 physicochemical parameters were characterized. The skin mucus, gut, and water microbial communities were characterized using a metabarcoding approach targeting the V3-V4 regions of the 16S rRNA. Our results showed a significant distinction between the phylogenetic profile and diversity of the microbiome from each microbial niche. Skin mucus and bacterioplankton communities were significantly closer in composition than gut and free-living communities. Species-specific factors mostly modulated gut bacterial communities, while the skin mucus microbiome was predominantly associated with environmental physicochemistry and bacterioplankton community structure. These results suggest that the variable skin mucus community is a relevant target for the development of microbial biomarkers of environmental status, while the more conserved gut microbiome is better suited to study long-term host-microbe interactions over evolutionary time scales. IMPORTANCE Whether host-associated microbiomes are mostly shaped by species-specific or environmental factors is still unresolved. In particular, it is unknown to what extent microbial communities from two different host tissues from the same host respond to these factors. Our study is one of the first to focus on the microbiome of teleost fish to shed a light on this topic as we investigate how the phylogenetic structure of microbial communities from two distinct fish tissues are shaped by species- and habitat-specific factors. Our study showed that in contrast to the teleost gut microbiome, skin mucus communities are highly environment dependent. This result has various implications: (i) the skin mucus microbiome should be used, rather than the gut, to investigate bacterial biomarkers of ecosystem perturbance in the wild, and (ii) the gut microbiome is better suited for studies of the drivers of phylosymbiosis, or the coevolution of fish and their symbionts.

Biorheology ◽  
2015 ◽  
Vol 52 (4) ◽  
pp. 247-256 ◽  
Author(s):  
Francisco A. Guardiola ◽  
María Cuartero ◽  
María del Mar Collado-González ◽  
Marta Arizcún ◽  
F. Guillermo Díaz Baños ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Öncü Maraci ◽  
Anna Antonatou-Papaioannou ◽  
Sebastian Jünemann ◽  
Omar Castillo-Gutiérrez ◽  
Tobias Busche ◽  
...  

Microbial communities residing in the gastrointestinal tracts of animals have profound impacts on the physiological processes of their hosts. In humans, host-specific and environmental factors likely interact together to shape gut microbial communities, resulting in remarkable inter-individual differences. However, we still lack a full understanding of to what extent microbes are individual-specific and controlled by host-specific factors across different animal taxa. Here, we document the gut microbial characteristics in two estrildid finch species, the Bengalese finch (Lonchura striata domestica) and the zebra finch (Taeniopygia guttata) to investigate between-species and within-species differences. We collected fecal samples from breeding pairs that were housed under strictly controlled environmental and dietary conditions. All individuals were sampled at five different time points over a range of 120 days covering different stages of the reproductive cycle. We found significant species-specific differences in gut microbial assemblages. Over a period of 3 months, individuals exhibited unique, individual-specific microbial profiles. Although we found a strong individual signature in both sexes, within-individual variation in microbial communities was larger in males of both species. Furthermore, breeding pairs had more similar microbial profiles, compared to randomly chosen males and females. Our study conclusively shows that host-specific factors contribute structuring of gut microbiota.


Author(s):  
L.L. Fomina ◽  
◽  
Yu.L. Oshurkova ◽  
O.A. Junina ◽  
T.S. Kulakova ◽  
...  

2021 ◽  
Author(s):  
Jennifer L. Houtz ◽  
Jon G. Sanders ◽  
Anthony Denice ◽  
Andrew H. Moeller

2017 ◽  
Vol 68 (11) ◽  
pp. 2123 ◽  
Author(s):  
I. Beveridge ◽  
T. H. Cribb ◽  
S. C. Cutmore

During a helminthological examination of teleost fish of Moreton Bay (Qld, Australia), 976 fish from 13 orders, 57 families and 133 species were examined and nine species of trypanorhynch metacestodes were identified. Callitetrarhynchus gracilis (Rudolphi, 1819) was the most frequently encountered species, found in 16 species of fish, with Callitetrarhynchus speciosus (Linton, 1897), Pterobothrium pearsoni (Southwell, 1929), Otobothrium alexanderi Palm, 2004, Otobothrium mugilis Hiscock, 1954, Otobothrium parvum Beveridge & Justine, 2007, Proemotobothrium southwelli Beveridge & Campbell, 2001, Pseudotobothrium dipsacum (Linton, 1897) and Heteronybelinia cf. heteromorphi Palm, 1999 occurring in fewer host species and at lower prevalences. Comparisons are made with studies elsewhere in the world and specifically within the South-west Pacific. Of the best studied regions in the South-west Pacific (Heron Island, Lizard Island, New Caledonia and now Moreton Bay), the fauna from Moreton Bay was found to be the most distinctive, with fauna from the three reef locations sharing 35–48% of species between sites and just 12–24% with Moreton Bay. The fauna of trypanorhynch cestodes from Lizard Island and New Caledonia was found to be the most similar.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Jessica Diaz ◽  
Aspen T. Reese

AbstractBecause of its potential to modulate host health, the gut microbiome of captive animals has become an increasingly important area of research. In this paper, we review the current literature comparing the gut microbiomes of wild and captive animals, as well as experiments tracking the microbiome when animals are moved between wild and captive environments. As a whole, these studies report highly idiosyncratic results with significant differences in the effect of captivity on the gut microbiome between host species. While a few studies have analyzed the functional capacity of captive microbiomes, there has been little research directly addressing the health consequences of captive microbiomes. Therefore, the current body of literature cannot broadly answer what costs, if any, arise from having a captive microbiome in captivity. Addressing this outstanding question will be critical to determining whether it is worth pursuing microbial manipulations as a conservation tool. To stimulate the next wave of research which can tie the captive microbiome to functional and health impacts, we outline a wide range of tools that can be used to manipulate the microbiome in captivity and suggest a variety of methods for measuring the impact of such manipulation preceding therapeutic use. Altogether, we caution researchers against generalizing results between host species given the variability in gut community responses to captivity and highlight the need to understand what role the gut microbiome plays in captive animal health before putting microbiome manipulations broadly into practice.


mBio ◽  
2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Lauren E. Fuess ◽  
Stijn den Haan ◽  
Fei Ling ◽  
Jesse N. Weber ◽  
Natalie C. Steinel ◽  
...  

ABSTRACT Commensal microbial communities have immense effects on their vertebrate hosts, contributing to a number of physiological functions, as well as host fitness. In particular, host immunity is strongly linked to microbiota composition through poorly understood bi-directional links. Gene expression may be a potential mediator of these links between microbial communities and host function. However, few studies have investigated connections between microbiota composition and expression of host immune genes in complex systems. Here, we leverage a large study of laboratory-raised fish from the species Gasterosteus aculeatus (three-spined stickleback) to document correlations between gene expression and microbiome composition. First, we examined correlations between microbiome alpha diversity and gene expression. Our results demonstrate robust positive associations between microbial alpha diversity and expression of host immune genes. Next, we examined correlations between host gene expression and abundance of microbial taxa. We identified 15 microbial families that were highly correlated with host gene expression. These families were all tightly correlated with host expression of immune genes and processes, falling into one of three categories—those positively correlated, negatively correlated, and neutrally related to immune processes. Furthermore, we highlight several important immune processes that are commonly associated with the abundance of these taxa, including both macrophage and B cell functions. Further functional characterization of microbial taxa will help disentangle the mechanisms of the correlations described here. In sum, our study supports prevailing hypotheses of intimate links between host immunity and gut microbiome composition. IMPORTANCE Here, we document associations between host gene expression and gut microbiome composition in a nonmammalian vertebrate species. We highlight associations between expression of immune genes and both microbiome diversity and abundance of specific microbial taxa. These findings support other findings from model systems which have suggested that gut microbiome composition and host immunity are intimately linked. Furthermore, we demonstrate that these correlations are truly systemic; the gene expression detailed here was collected from an important fish immune organ (the head kidney) that is anatomically distant from the gut. This emphasizes the systemic impact of connections between gut microbiota and host immune function. Our work is a significant advancement in the understanding of immune-microbiome links in nonmodel, natural systems.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi93-vi94
Author(s):  
Kory Dees ◽  
Hyunmin Koo ◽  
James Humphreys ◽  
Joseph Hakim ◽  
David Crossman ◽  
...  

Abstract Although immunotherapy works well in glioblastoma (GBM) pre-clinical mouse models, the therapy has unfortunately not demonstrated efficacy in humans. In melanoma and other cancers, the composition of the gut microbiome has been shown to determine responsiveness or resistance to immune checkpoint inhibitors (anti-PD-1). Most pre-clinical cancer studies have been done in mouse models using mouse gut microbiomes, but there are significant differences between mouse and human microbial gut compositions. To address this inconsistency, we developed a novel humanized microbiome (HuM) model to study the response to immunotherapy in a pre-clinical mouse model of GBM. We used five healthy human donors for fecal transplantation of gnotobiotic mice. After the transplanted microbiomes stabilized, the mice were bred to generate five independent humanized mouse lines (HuM1-HuM5). Analysis of shotgun metagenomic sequencing data from fecal samples revealed a unique microbiome with significant differences in diversity and microbial composition among HuM1-HuM5 lines. Interestingly, we found that the HuM lines responded differently to anti-PD-1. Specifically, we demonstrate that HuM2 and HuM3 mice are responsive to anti-PD-1 and displayed significantly increased survival compared to isotype controls, while HuM1, HuM4, and HuM5 mice are resistant to anti-PD-1. These mice are genetically identical, and only differ in the composition of the gut microbiome. In a correlative experiment, we found that disrupting the responder HuM2 microbiome with antibiotics abrogated the positive response to anti-PD-1, indicating that HuM2 microbiota must be present in the mice to elicit the positive response to anti-PD-1 in the GBM model. The question remains of whether the “responsive” microbial communities in HuM2 and HuM3 can be therapeutically exploited and applicable in other tumor models, or if the “resistant” microbial communities in HuM1, HuM4, and HuM5 can be depleted and/or replaced. Future studies will assess responder microbial transplants as a method of enhancing immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document