scholarly journals Effects of Medicago truncatula Genetic Diversity, Rhizobial Competition, and Strain Effectiveness on the Diversity of a Natural Sinorhizobium Species Community

2008 ◽  
Vol 74 (18) ◽  
pp. 5653-5661 ◽  
Author(s):  
Cécile Rangin ◽  
Brigitte Brunel ◽  
Jean-Claude Cleyet-Marel ◽  
Marie-Mathilde Perrineau ◽  
Gilles Béna

ABSTRACT We investigated the genetic diversity and symbiotic efficiency of 223 Sinorhizobium sp. isolates sampled from a single Mediterranean soil and trapped with four Medicago truncatula lines. DNA molecular polymorphism was estimated by capillary electrophoresis-single-stranded conformation polymorphism and restriction fragment length polymorphism on five loci (IGSNOD , typA, virB11, avhB11, and the 16S rRNA gene). More than 90% of the rhizobia isolated belonged to the Sinorhizobium medicae species (others belonged to Sinorhizobium meliloti), with different proportions of the two species among the four M. truncatula lines. The S. meliloti population was more diverse than that of S. medicae, and significant genetic differentiation among bacterial populations was detected. Single inoculations performed in tubes with each bacterial genotype and each plant line showed significant bacterium-plant line interactions for nodulation and N2 fixation levels. Competition experiments within each species highlighted either strong or weak competition among genotypes within S. medicae and S. meliloti, respectively. Interspecies competition experiments showed S. meliloti to be more competitive than S. medicae for nodulation. Although not highly divergent at a nucleotide level, isolates collected from this single soil sample displayed wide polymorphism for both nodulation and N2 fixation. Each M. truncatula line might influence Sinorhizobium soil population diversity differently via its symbiotic preferences. Our data suggested that the two species did not evolve similarly, with S. meliloti showing polymorphism and variable selective pressures and S. medicae showing traces of a recent demographic expansion. Strain effectiveness might have played a role in the species and genotype proportions, but in conjunction with strain adaptation to environmental factors.

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Badreddine Sijilmassi ◽  
Abdelkarim Filali-Maltouf ◽  
Hassan Boulahyaoui ◽  
Aymane Kricha ◽  
Kenza Boubekri ◽  
...  

A total of 14 Rhizobium strains were isolated from lentil accessions grown at the ICARDA experimental research station at Marchouch in Morocco and used for molecular characterization and symbiotic efficiency assessment. Individual phylogenetic analysis using the 16S rRNA gene, house-keeping genes rpoB, recA, and gyrB, and symbiotic genes nodD and nodA along with Multilocus Sequence Analysis (MLSA) of the concatenated genes (16S rRNA-rpoB-recA-gyrB) was carried out for the identification and clustering of the isolates. The symbiotic efficiency of the strains was assessed on three Moroccan lentil cultivars (Bakria, Chakkouf, and Zaria) based on the number of nodules, plant height, plant dry weight, and total nitrogen content in leaves. The results showed that the individual phylogenetic analysis clustered all the strains into Rhizobium laguerreae and Rhizobium leguminosarum with sequence similarity ranging from 94 to 100%, except one strain which clustered with Mesorhizobium huakuii with sequence similarity of 100%. The MLSA of the concatenated genes and the related percentages of similarity clustered these strains into two groups of Rhizobium species, with one strain as a new genospecies when applying the threshold of 96%. For symbiotic efficiency, the Bakria variety showed the best association with 10 strains compared to its non-inoculated control (p-value ≤ 0.05), followed by Chakkouf and Zaria. The present study concluded that the genetic diversity and the symbiotic efficiency of Rhizobium strains appeared to be mainly under the control of the lentil genotypes.


2017 ◽  
Vol 30 (5) ◽  
pp. 399-409 ◽  
Author(s):  
Théophile Kazmierczak ◽  
Marianna Nagymihály ◽  
Florian Lamouche ◽  
Quentin Barrière ◽  
Ibtissem Guefrachi ◽  
...  

Legume plants interact with rhizobia to form nitrogen-fixing root nodules. Legume-rhizobium interactions are specific and only compatible rhizobia and plant species will lead to nodule formation. Even within compatible interactions, the genotype of both the plant and the bacterial symbiont will impact on the efficiency of nodule functioning and nitrogen-fixation activity. The model legume Medicago truncatula forms nodules with several species of the Sinorhizobium genus. However, the efficiency of these bacterial strains is highly variable. In this study, we compared the symbiotic efficiency of Sinorhizobium meliloti strains Sm1021, 102F34, and FSM-MA, and Sinorhizobium medicae strain WSM419 on the two widely used M. truncatula accessions A17 and R108. The efficiency of the interactions was determined by multiple parameters. We found a high effectiveness of the FSM-MA strain with both M. truncatula accessions. In contrast, specific highly efficient interactions were obtained for the A17-WSM419 and R108-102F34 combinations. Remarkably, the widely used Sm1021 strain performed weakly on both hosts. We showed that Sm1021 efficiently induced nodule organogenesis but cannot fully activate the differentiation of the symbiotic nodule cells, explaining its weaker performance. These results will be informative for the selection of appropriate rhizobium strains in functional studies on symbiosis using these M. truncatula accessions, particularly for research focusing on late stages of the nodulation process.


Author(s):  
Prithwi Ghosh ◽  
Katie N. Adolphsen ◽  
Svetlana N. Yurgel ◽  
Michael L. Kahn

Some soil bacteria called rhizobia can interact symbiotically with legumes in which they form nodules on the plant roots where they can reduce atmospheric dinitrogen to ammonia, a form of nitrogen that can be used by growing plants. Rhizobia/plant combinations can differ in how successful this symbiosis is—Sinorhizobium meliloti Rm1021 forms a relatively ineffective symbiosis with Medicago truncatula Jemalong A17 but Sinorhizobium medicae WSM419 is able to support more vigorous plant growth. Using proteomic data from free-living and symbiotic S. medicae WSM419, we previously identified a subset of proteins that were not closely related to any S. meliloti Rm1021 proteins and speculated that adding one or more of these proteins to S. meliloti Rm1021 would increase its effectiveness on M. truncatula A17. Three genes, Smed_3503, Smed_5985, and Smed_6456, were cloned into S. meliloti Rm1021 downstream of the E. coli lacZ promoter. Strains with these genes increased nodulation and improved plant growth, individually and in combination with one another. Smed_3503, renamed iseA (increased symbiotic effectiveness) had the largest impact, increasing M. truncatula biomass by 61%. iseA homologs were present in all currently sequenced S. medicae strains but were infrequent in other Sinorhizobium isolates. Rhizobium leguminosarum bv. viciae 3841 containing iseA led to more nodules on pea and lentil. Split root experiments with M. truncatula A17 indicated that S. meliloti Rm1021 carrying the S. medicae iseA is less sensitive to plant induced resistance to rhizobial infection, suggesting an interaction with the plant’s regulation of nodule formation. IMPORTANCE The legume symbiosis with rhizobia is highly specific. Rhizobia that can nodulate and fix nitrogen on one legume species are often unable to associate with a different species. The interaction can be more subtle—symbiotically enhanced growth of the host plant can differ substantially when nodules are formed by different rhizobial isolates of a species, much like disease severity can differ when conspecific isolates of pathogenic bacteria infect different cultivars. Much is known about bacterial genes essential for a productive symbiosis, but less is understood about genes that marginally improve performance. We used a proteomic strategy to identify Sinorhizobium genes that contribute to plant growth differences that are seen when two different strains nodulate M. truncatula A17. These genes could also alter the symbiosis between R. leguminosarum bv. viciae 3841 and pea or lentil, suggesting that this approach may identify new genes that may more generally contribute to symbiotic productivity.


2006 ◽  
Vol 67 (1) ◽  
pp. 114-124 ◽  
Author(s):  
Xavier Bailly ◽  
Gilles Béna ◽  
Vanina Lenief ◽  
Philippe de Lajudie ◽  
Jean-Christophe Avarre

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fehintola V. Ajogbasile ◽  
Adeyemi T. Kayode ◽  
Paul E. Oluniyi ◽  
Kazeem O. Akano ◽  
Jessica N. Uwanibe ◽  
...  

Abstract Background Malaria remains a public health burden especially in Nigeria. To develop new malaria control and elimination strategies or refine existing ones, understanding parasite population diversity and transmission patterns is crucial. Methods In this study, characterization of the parasite diversity and structure of Plasmodium falciparum isolates from 633 dried blood spot samples in Nigeria was carried out using 12 microsatellite loci of P. falciparum. These microsatellite loci were amplified via semi-nested polymerase chain reaction (PCR) and fragments were analysed using population genetic tools. Results Estimates of parasite genetic diversity, such as mean number of different alleles (13.52), effective alleles (7.13), allelic richness (11.15) and expected heterozygosity (0.804), were high. Overall linkage disequilibrium was weak (0.006, P < 0.001). Parasite population structure was low (Fst: 0.008–0.105, AMOVA: 0.039). Conclusion The high level of parasite genetic diversity and low population structuring in this study suggests that parasite populations circulating in Nigeria are homogenous. However, higher resolution methods, such as the 24 SNP barcode and whole genome sequencing, may capture more specific parasite genetic signatures circulating in the country. The results obtained can be used as a baseline for parasite genetic diversity and structure, aiding in the formulation of appropriate therapeutic and control strategies in Nigeria.


2021 ◽  
Vol 11 (3) ◽  
pp. 1293
Author(s):  
Ana Eusébio ◽  
André Neves ◽  
Isabel Paula Marques

Olive oil and pig productions are important industries in Portugal that generate large volumes of wastewater with high organic load and toxicity, raising environmental concerns. The principal objective of this study is to energetically valorize these organic effluents—piggery effluent and olive mill wastewater—through the anaerobic digestion to the biogas/methane production, by means of the effluent complementarity concept. Several mixtures of piggery effluent were tested, with an increasing percentage of olive mill wastewater. The best performance was obtained for samples of piggery effluent alone and in admixture with 30% of OMW, which provided the same volume of biogas (0.8 L, 70% CH4), 63/75% COD removal, and 434/489 L CH4/kg SVin, respectively. The validation of the process was assessed by molecular evaluation through Next Generation Sequencing (NGS) of the 16S rRNA gene. The structure of the microbial communities for both samples, throughout the anaerobic process, was characterized by the predominance of bacterial populations belonging to the phylum Firmicutes, mainly Clostridiales, with Bacteroidetes being the subdominant populations. Archaea populations belonging to the genus Methanosarcina became predominant throughout anaerobic digestion, confirming the formation of methane mainly from acetate, in line with the greatest removal of volatile fatty acids (VFAs) in these samples.


2001 ◽  
Vol 14 (7) ◽  
pp. 887-894 ◽  
Author(s):  
Boglárka Oláh ◽  
Erno Kiss ◽  
Zoltán Györgypál ◽  
Judit Borzi ◽  
Gyöngyi Cinege ◽  
...  

In specific plant organs, namely the root nodules of alfalfa, fixed nitrogen (ammonia) produced by the symbiotic partner Sinorhizobium meliloti supports the growth of the host plant in nitrogen-depleted environment. Here, we report that a derivative of S. meliloti carrying a mutation in the chromosomal ntrR gene induced nodules with enhanced nitrogen fixation capacity, resulting in an increased dry weight and nitrogen content of alfalfa. The efficient nitrogen fixation is a result of the higher expression level of the nifH gene, encoding one of the subunits of the nitrogenase enzyme, and nifA, the transcriptional regulator of the nif operon. The ntrR gene, controlled negatively by its own product and positively by the symbiotic regulator syrM, is expressed in the same zone of nodules as the nif genes. As a result of the nitrogen-tolerant phenotype of the strain, the beneficial effect of the mutation on efficiency is not abolished in the presence of the exogenous nitrogen source. The ntrR mutant is highly competitive in nodule occupancy compared with the wild-type strain. Sequence analysis of the mutant region revealed a new cluster of genes, termed the “ntrPR operon,” which is highly homologous to a group of vap-related genes of various pathogenic bacteria that are presumably implicated in bacterium-host interactions. On the basis of its favorable properties, the strain is a good candidate for future agricultural utilization.


2010 ◽  
Vol 77 (1) ◽  
pp. 258-268 ◽  
Author(s):  
Gustavo A. Romero-Pérez ◽  
Kim H. Ominski ◽  
Tim A. McAllister ◽  
Denis O. Krause

ABSTRACTFeces from cattle production are considered important sources of bacterial contamination of food and the environment. Little is known about the combined effects of arctic temperatures and fodder tannins on rumen and hindgut bacterial populations. Individual rumen liquor and rectal fecal samples from donor steers fed either alfalfa silage or sainfoin (Onobrychis viciifoliaScop.) silage and waterad libitumwere collected weekly on the first three sampling days and fortnightly afterwards. The daily ambient temperatures were registered and averaged to weekly mean temperatures. Steers fed sainfoin silage had lower (P< 0.05) concentrations of branched-chain volatile fatty acids (VFA) than those fed alfalfa silage. All VFA concentrations were higher (P< 0.001) in rumen liquor samples than in fecal samples. The interaction of sample type and diet showed a significant effect (P< 0.05) on the proportions of the bacterial community that were from the phylaProteobacteriaandVerrucomicrobia.Ambient temperature had an indirect effect (P< 0.05) on the phylumFirmicutes, as it affected its proportional balance. The bacterial population diversity in samples appeared to decrease concurrently with the ambient temperature. The phylumFirmicutesexplained the first principal component at 64.83 and 42.58% of the total variance in rumen liquor and fecal samples, respectively. The sample type had a larger effect on bacterial communities than diet and temperature. Certain bacterial populations seemed to be better adapted than others to environmentally adverse conditions, such as less access time to nutrients due to higher motility and rate of passage of digesta caused by extreme temperatures, or antimicrobials such as tannins, possibly due to an influence of their biogeographical location within the gut.


Sign in / Sign up

Export Citation Format

Share Document