scholarly journals Differential Effects of Heated Perfusate on Morphology, Viability, and Dissemination of Staphylococcus epidermidis Biofilms

2020 ◽  
Vol 86 (20) ◽  
Author(s):  
Joanne K. Beckwith ◽  
J. Scott VanEpps ◽  
Michael J. Solomon

ABSTRACT The biofilm phenotype offers bacterial communities protection from environmental factors, as evidenced by its role in the viability, persistence, and virulence of cells under conditions in which flow is present, such as in riverbeds, industrial piping networks, and the human circulatory system. Here, we examined the hypothesis that temperature—an environmental factor that affects the growth of the Gram-positive bacterium Staphylococcus epidermidis—controls, through dual mechanisms, persistence of this bacterial strain in a shear environment characteristic of the human circulatory system. We demonstrated that temperature and antibiotics impact the surface-adhered biofilm and material disseminated downstream in different ways. Specifically, by means of three-dimensional (3D) confocal and scanning electron microscopy, an increase in surface-adhered biofilm heterogeneity was observed with increasing temperature. Additionally, we found a 4-log decrease in cell viability at the biofilm surface as the perfusate temperature was increased from 37°C to 50°C. Finally, the viability of cell-containing fragments that were disseminated from the substrate was assessed by downstream sampling, culture, and optical density measurement. We found that although temperature decreased the viability of the surface-adhered biofilm, the downstream material remained viable. And yet, in the presence of antibiotics, the growth of disseminated material was nearly completely inhibited, even though the addition of antibiotics had no significant impact on the viability of the surface-adhered biofilm. The mechanism involves both biofilm structural damage, as quantified by morphology of debrided material, and reduced cell viability, as quantified by assay of bacterial cells present in the surface-adherent biofilm and in the downstream effluent. The results potentially identify parameter ranges in which elevated temperature could augment current antibiotic treatment regimens. IMPORTANCE Bacterial biofilms are a leading cause of medical device infections. Staphylococcus epidermidis is commonly responsible for these types of infections. With increasing occurrences of antibacterial resistance, there has been a new push to explore treatment options that augment traditional antibiotic therapies. Here, we show how thermal treatment can be applied to both degrade bacterial biofilms on substrates and impede the proliferation of cells that detach from them. Understanding the response of both surface-adhered and dispersed bacterial cells under thermal stress conditions is a foundational step toward the development of an in situ treatment/remediation method for biofilm growth in medical devices; such an application could use oscillatory flow of heated fluid in a catheter as an adjuvant to antibiotic treatment. The work furthermore provides new insight into the viability of disseminated biofilm material.

2012 ◽  
Vol 56 (11) ◽  
pp. 5923-5937 ◽  
Author(s):  
Yibao Ma ◽  
Meng Chen ◽  
John E. Jones ◽  
Andrew C. Ritts ◽  
Qingsong Yu ◽  
...  

ABSTRACTBiofilm formation on implantable medical devices is a major impediment to the treatment of nosocomial infections and promotes local progressive tissue destruction.Staphylococcus epidermidisinfections are the leading cause of biofilm formation on indwelling devices. Bacteria in biofilms are highly resistant to antibiotic treatment, which in combination with the increasing prevalence of antibiotic resistance among human pathogens further complicates treatment of biofilm-related device infections. We have developed a novel plasma coating technology. Trimethylsilane (TMS) was used as a monomer to coat the surfaces of 316L stainless steel and grade 5 titanium alloy, which are widely used in implantable medical devices. The results of biofilm assays demonstrated that this TMS coating markedly decreasedS. epidermidisbiofilm formation by inhibiting the attachment of bacterial cells to the TMS-coated surfaces during the early phase of biofilm development. We also discovered that bacterial cells on the TMS-coated surfaces were more susceptible to antibiotic treatment than their counterparts in biofilms on uncoated surfaces. These findings suggested that TMS coating could result in a surface that is resistant to biofilm development and also in a bacterial community that is more sensitive to antibiotic therapy than typical biofilms.


2012 ◽  
Vol 79 (4) ◽  
pp. 1393-1395 ◽  
Author(s):  
Llinos G. Harris ◽  
Yamni Nigam ◽  
James Sawyer ◽  
Dietrich Mack ◽  
David I. Pritchard

ABSTRACTStaphylococcus aureusandStaphylococcus epidermidisbiofilms cause chronic infections due to their ability to form biofilms. The excretions/secretions ofLucilia sericatalarvae (maggots) have effective activity for debridement and disruption of bacterial biofilms. In this paper, we demonstrate how chymotrypsin derived from maggot excretions/secretions disrupts protein-dependent bacterial biofilm formation mechanisms.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Julie Tréguier ◽  
Loic Bugnicourt ◽  
Guillaume Gay ◽  
Mamoudou Diallo ◽  
Salim Timo Islam ◽  
...  

ABSTRACT Single-cell microfluidics is a powerful method to study bacteria and determine their susceptibility to antibiotic treatment. Glass treatment by adhesive molecules is a potential solution to immobilize bacterial cells and perform microscopy, but traditional cationic polymers such as polylysine deeply affect bacterial physiology. In this work, we chemically characterized a class of chitosan polymers for their biocompatibility when adsorbed to glass. Chitosan chains of known length and composition allowed growth of Escherichia coli cells without any deleterious effects on cell physiology. Combined with a machine learning approach, this method could measure the antibiotic susceptibility of a diversity of clinical strains in less than 1 h and with higher accuracy than current methods. Finally, chitosan polymers also supported growth of Klebsiella pneumoniae, another bacterial pathogen of clinical significance. IMPORTANCE Current microfluidic techniques are powerful to study bacteria and determine their response to antibiotic treatment, but they are currently limited by their complex manipulation. Chitosan films are fully biocompatible and could thus be a viable replacement for existing commercial devices that currently use polylysine. Thus, the low cost of chitosan slides and their simple implementation make them highly versatile for research as well as clinical use.


2011 ◽  
Author(s):  
M. A. Green ◽  
C. R. Kaplan ◽  
J. P. Boris ◽  
E. S. Oran

2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Giulia Orazi ◽  
Fabrice Jean-Pierre ◽  
George A. O’Toole

ABSTRACT The thick mucus within the airways of individuals with cystic fibrosis (CF) promotes frequent respiratory infections that are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent pathogens that cause CF pulmonary infections, and both are among the most common etiologic agents of chronic wound infections. Furthermore, the ability of P. aeruginosa and S. aureus to form biofilms promotes the establishment of chronic infections that are often difficult to eradicate using antimicrobial agents. In this study, we found that multiple LasR-regulated exoproducts of P. aeruginosa, including 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), siderophores, phenazines, and rhamnolipids, likely contribute to the ability of P. aeruginosa PA14 to shift S. aureus Newman norfloxacin susceptibility profiles. Here, we observe that exposure to P. aeruginosa exoproducts leads to an increase in intracellular norfloxacin accumulation by S. aureus. We previously showed that P. aeruginosa supernatant dissipates the S. aureus membrane potential, and furthermore, depletion of the S. aureus proton motive force recapitulates the effect of the P. aeruginosa PA14 supernatant on shifting norfloxacin sensitivity profiles of biofilm-grown S. aureus Newman. From these results, we hypothesize that exposure to P. aeruginosa PA14 exoproducts leads to increased uptake of the drug and/or an impaired ability of S. aureus Newman to efflux norfloxacin. Surprisingly, the effect observed here of P. aeruginosa PA14 exoproducts on S. aureus Newman susceptibility to norfloxacin seemed to be specific to these strains and this antibiotic. Our results illustrate that microbially derived products can alter the ability of antimicrobial agents to kill bacterial biofilms. IMPORTANCE Pseudomonas aeruginosa and Staphylococcus aureus are frequently coisolated from multiple infection sites, including the lungs of individuals with cystic fibrosis (CF) and nonhealing diabetic foot ulcers. Coinfection with P. aeruginosa and S. aureus has been shown to produce worse outcomes compared to infection with either organism alone. Furthermore, the ability of these pathogens to form biofilms enables them to cause persistent infection and withstand antimicrobial therapy. In this study, we found that P. aeruginosa-secreted products dramatically increase the ability of the antibiotic norfloxacin to kill S. aureus biofilms. Understanding how interspecies interactions alter the antibiotic susceptibility of bacterial biofilms may inform treatment decisions and inspire the development of new therapeutic strategies.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Babita Adhikari Dhungel ◽  
Revathi Govind

ABSTRACT Clostridioides difficile is the leading cause of nosocomial infection and is the causative agent of antibiotic-associated diarrhea. The severity of the disease is directly associated with toxin production, and spores are responsible for the transmission and persistence of the organism. Previously, we characterized sin locus regulators SinR and SinR′ (we renamed it SinI), where SinR is the regulator of toxin production and sporulation. The SinI regulator acts as its antagonist. In Bacillus subtilis, Spo0A, the master regulator of sporulation, controls SinR by regulating the expression of its antagonist, sinI. However, the role of Spo0A in the expression of sinR and sinI in C. difficile had not yet been reported. In this study, we tested spo0A mutants in three different C. difficile strains, R20291, UK1, and JIR8094, to understand the role of Spo0A in sin locus expression. Western blot analysis revealed that spo0A mutants had increased SinR levels. Quantitative reverse transcription-PCR (qRT-PCR) analysis of its expression further supported these data. By carrying out genetic and biochemical assays, we show that Spo0A can bind to the upstream region of this locus to regulates its expression. This study provides vital information that Spo0A regulates the sin locus, which controls critical pathogenic traits such as sporulation, toxin production, and motility in C. difficile. IMPORTANCE Clostridioides difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. During infection, C. difficile spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. In C. difficile, the sin locus is known to regulate both sporulation and toxin production. In this study, we show that Spo0A, the master regulator of sporulation, controls sin locus expression. Results from our study suggest that Spo0A directly regulates the expression of this locus by binding to its upstream DNA region. This observation adds new detail to the gene regulatory network that connects sporulation and toxin production in this pathogen.


2013 ◽  
Vol 79 (7) ◽  
pp. 2294-2301 ◽  
Author(s):  
Konstantinos P. Koutsoumanis ◽  
Alexandra Lianou

ABSTRACTConventional bacterial growth studies rely on large bacterial populations without considering the individual cells. Individual cells, however, can exhibit marked behavioral heterogeneity. Here, we present experimental observations on the colonial growth of 220 individual cells ofSalmonella entericaserotype Typhimurium using time-lapse microscopy videos. We found a highly heterogeneous behavior. Some cells did not grow, showing filamentation or lysis before division. Cells that were able to grow and form microcolonies showed highly diverse growth dynamics. The quality of the videos allowed for counting the cells over time and estimating the kinetic parameters lag time (λ) and maximum specific growth rate (μmax) for each microcolony originating from a single cell. To interpret the observations, the variability of the kinetic parameters was characterized using appropriate probability distributions and introduced to a stochastic model that allows for taking into account heterogeneity using Monte Carlo simulation. The model provides stochastic growth curves demonstrating that growth of single cells or small microbial populations is a pool of events each one of which has its own probability to occur. Simulations of the model illustrated how the apparent variability in population growth gradually decreases with increasing initial population size (N0). For bacterial populations withN0of >100 cells, the variability is almost eliminated and the system seems to behave deterministically, even though the underlying law is stochastic. We also used the model to demonstrate the effect of the presence and extent of a nongrowing population fraction on the stochastic growth of bacterial populations.


2014 ◽  
Vol 21 (9) ◽  
pp. 1206-1214 ◽  
Author(s):  
Lin Yan ◽  
Lei Zhang ◽  
Hongyan Ma ◽  
David Chiu ◽  
James D. Bryers

ABSTRACTNosocomial infections are the fourth leading cause of morbidity and mortality in the United States, resulting in 2 million infections and ∼100,000 deaths each year. More than 60% of these infections are associated with some type of biomedical device.Staphylococcus epidermidisis a commensal bacterium of the human skin and is the most common nosocomial pathogen infecting implanted medical devices, especially those in the cardiovasculature.S. epidermidisantibiotic resistance and biofilm formation on inert surfaces make these infections hard to treat. Accumulation-associated protein (Aap), a cell wall-anchored protein ofS. epidermidis, is considered one of the most important proteins involved in the formation ofS. epidermidisbiofilm. A small recombinant protein vaccine comprising a single B-repeat domain (Brpt1.0) ofS. epidermidisRP62A Aap was developed, and the vaccine's efficacy was evaluatedin vitrowith a biofilm inhibition assay andin vivoin a murine model of biomaterial-associated infection. A high IgG antibody response againstS. epidermidisRP62A was detected in the sera of the mice after two subcutaneous immunizations with Brpt1.0 coadministered with Freund's adjuvant. Sera from Brpt1.0-immunized mice inhibitedin vitroS. epidermidisRP62A biofilm formation in a dose-dependent pattern. After receiving two immunizations, each mouse was surgically implanted with a porous scaffold disk containing 5 × 106CFU ofS. epidermidisRP62A. Weight changes, inflammatory markers, and histological assay results after challenge withS. epidermidisindicated that the mice immunized with Brpt1.0 exhibited significantly higher resistance toS. epidermidisRP62A implant infection than the control mice. Day 8 postchallenge, there was a significantly lower number of bacteria in scaffold sections and surrounding tissues and a lower residual inflammatory response to the infected scaffold disks for the Brpt1.0-immunized mice than for of the ovalbumin (Ova)-immunized mice.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Derek Fleming ◽  
Laura Chahin ◽  
Kendra Rumbaugh

ABSTRACT The persistent nature of chronic wounds leaves them highly susceptible to invasion by a variety of pathogens that have the ability to construct an extracellular polymeric substance (EPS). This EPS makes the bacterial population, or biofilm, up to 1,000-fold more antibiotic tolerant than planktonic cells and makes wound healing extremely difficult. Thus, compounds which have the ability to degrade biofilms, but not host tissue components, are highly sought after for clinical applications. In this study, we examined the efficacy of two glycoside hydrolases, α-amylase and cellulase, which break down complex polysaccharides, to effectively disrupt Staphylococcus aureus and Pseudomonas aeruginosa monoculture and coculture biofilms. We hypothesized that glycoside hydrolase therapy would significantly reduce EPS biomass and convert bacteria to their planktonic state, leaving them more susceptible to conventional antimicrobials. Treatment of S. aureus and P. aeruginosa biofilms, grown in vitro and in vivo, with solutions of α-amylase and cellulase resulted in significant reductions in biomass, dissolution of the biofilm, and an increase in the effectiveness of subsequent antibiotic treatments. These data suggest that glycoside hydrolase therapy represents a potential safe, effective, and new avenue of treatment for biofilm-related infections.


Sign in / Sign up

Export Citation Format

Share Document