scholarly journals Glycoside Hydrolases Degrade Polymicrobial Bacterial Biofilms in Wounds

2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Derek Fleming ◽  
Laura Chahin ◽  
Kendra Rumbaugh

ABSTRACT The persistent nature of chronic wounds leaves them highly susceptible to invasion by a variety of pathogens that have the ability to construct an extracellular polymeric substance (EPS). This EPS makes the bacterial population, or biofilm, up to 1,000-fold more antibiotic tolerant than planktonic cells and makes wound healing extremely difficult. Thus, compounds which have the ability to degrade biofilms, but not host tissue components, are highly sought after for clinical applications. In this study, we examined the efficacy of two glycoside hydrolases, α-amylase and cellulase, which break down complex polysaccharides, to effectively disrupt Staphylococcus aureus and Pseudomonas aeruginosa monoculture and coculture biofilms. We hypothesized that glycoside hydrolase therapy would significantly reduce EPS biomass and convert bacteria to their planktonic state, leaving them more susceptible to conventional antimicrobials. Treatment of S. aureus and P. aeruginosa biofilms, grown in vitro and in vivo, with solutions of α-amylase and cellulase resulted in significant reductions in biomass, dissolution of the biofilm, and an increase in the effectiveness of subsequent antibiotic treatments. These data suggest that glycoside hydrolase therapy represents a potential safe, effective, and new avenue of treatment for biofilm-related infections.

2015 ◽  
Author(s):  
Perrin Baker ◽  
Preston J HIll ◽  
Brendan D Snarr ◽  
Noor Alnabelseya ◽  
Mathew J Pestrak ◽  
...  

Bacterial biofilms are a significant medical challenge as they are recalcitrant to current therapeutic regimes. A key component of biofilm formation in the opportunistic human pathogenPseudomonas aeruginosais the biosynthesis of the exopolysaccharides Pel and Psl, which are involved in the formation and maintenance of the structural biofilm scaffold and protection against antimicrobials and host defenses. Given that the glycoside hydrolases - PelAhand PslGh- encoded in thepelandpslbiosynthetic operons, respectively, are utilized for in vivo exopolysaccharide processing, we reasoned that these would provide specificity to targetP. aeruginosabiofilms. Evaluating these enzymes as potential therapeutics, we demonstrate that these glycoside hydrolases selectively target and degrade the exopolysaccharide component of the biofilm matrix and that nanomolar concentrations of these enzymes can both prevent biofilm formation as well as rapidly disrupt preexisting biofilms in vitro. This treatment was effective against clinical and environmental P. aeruginosa isolates and reduced biofilm biomass by 58-94%. These non-cytotoxic enzymes potentiated antibiotics as the addition of either enzyme to a sub-lethal concentration of colistin reduced viable bacterial counts by 2.5 orders of magnitude. Additionally, PelAhwas able to increase neutrophil killing by ~50%. This work illustrates the feasibility and benefits of using bacterial exopolysaccharide biosynthetic glycoside hydrolases and synthetic biology to develop novel anti-biofilm therapeutics.


2014 ◽  
Vol 58 (11) ◽  
pp. 6896-6903 ◽  
Author(s):  
Soumitra Maiti ◽  
Sunita Patro ◽  
Sukumar Purohit ◽  
Sumeet Jain ◽  
Shantibhusan Senapati ◽  
...  

ABSTRACTWe successfully produced two human β-defensins (hBD-1 and hBD-2) in bacteria as functional peptides and tested their antibacterial activities againstSalmonella entericaserovar Typhi,Escherichia coli, andStaphylococcus aureusemploying both spectroscopic and viable CFU count methods. Purified peptides showed approximately 50% inhibition of the bacterial population when used individually and up to 90% when used in combination. The 50% lethal doses (LD50) of hBD-1 againstS.Typhi,E. coli, andS. aureuswere 0.36, 0.40, and 0.69 μg/μl, respectively, while those for hBD-2 against the same bacteria were 0.38, 0.36, and 0.66 μg/μl, respectively. Moreover, we observed that bacterium-derived antimicrobial peptides were also effective in increasing survival time and decreasing bacterial loads in the peritoneal fluid, liver, and spleen of a mouse intraperitoneally infected withS.Typhi. The 1:1 hBD-1/hBD-2 combination showed maximum effectiveness in challenging theSalmonellainfectionin vitroandin vivo. We also observed less tissue damage and sepsis formation in the livers of infected mice after treatment with hBD-1 and hBD-2 peptides individually or in combination. Based on these findings, we conclude that bacterium-derived recombinant β-defensins (hBD-1 and hBD-2) are promising antimicrobial peptide (AMP)-based substances for the development of new therapeutics against typhoid fever.


2006 ◽  
Vol 72 (12) ◽  
pp. 7730-7738 ◽  
Author(s):  
Stephanie Shipkowski ◽  
Jean E. Brenchley

ABSTRACT Glycoside hydrolases are organized into glycoside hydrolase families (GHFs) and within this larger group, the β-galactosidases are members of four families: 1, 2, 35, and 42. Most genes encoding GHF 42 enzymes are from prokaryotes unlikely to encounter lactose, suggesting a different substrate for these enzymes. In search of this substrate, we analyzed genes neighboring GHF 42 genes in databases and detected an arrangement implying that these enzymes might hydrolyze oligosaccharides released by GHF 53 enzymes from arabinogalactan type I, a pectic plant polysaccharide. Because Bacillus subtilis has adjacent GHF 42 and GHF 53 genes, we used it to test the hypothesis that a GHF 42 enzyme (LacA) could act on the oligosaccharides released by a GHF 53 enzyme (GalA) from galactan. We cloned these genes, plus a second GHF 42 gene from B. subtilis, yesZ, into Escherichia coli and demonstrated that cells expressing LacA with GalA gained the ability to use galactan as a carbon source. We constructed B. subtilis mutants and showed that the increased β-galactosidase activity generated in response to the addition of galactan was eliminated by inactivating lacA or galA but unaffected by the inactivation of yesZ. As further demonstration, we overexpressed the LacA and GalA proteins in E. coli and demonstrated that these enzymes degrade galactan in vitro as assayed by thin-layer chromatography. Our work provides the first in vivo evidence for a function of some GHF 42 β-galactosidases. Similar functions for other β-galactosidases in both GHFs 2 and 42 are suggested by genomic data.


2011 ◽  
Vol 56 (3) ◽  
pp. 1229-1239 ◽  
Author(s):  
Arnold Louie ◽  
Brian D. VanScoy ◽  
David L. Brown ◽  
Robert W. Kulawy ◽  
Henry S. Heine ◽  
...  

ABSTRACTBacillus anthracis, the bacterium that causes anthrax, is an agent of bioterrorism. The most effective antimicrobial therapy forB. anthracisinfections is unknown. Anin vitropharmacodynamic model ofB. anthraciswas used to compare the efficacies of simulated clinically prescribed regimens of moxifloxacin, linezolid, and meropenem with the “gold standards,” doxycycline and ciprofloxacin. Treatment outcomes for isogenic spore-forming and non-spore-forming strains ofB. anthraciswere compared. Against spore-formingB. anthracis, ciprofloxacin, moxifloxacin, linezolid, and meropenem reduced theB. anthracispopulation by 4 log10CFU/ml over 10 days. Doxycycline reduced the population of thisB. anthracisstrain by 5 log10CFU/ml (analysis of variance [ANOVA]P= 0.01 versus other drugs). Against an isogenic non-spore-forming strain, meropenem killed the vegetativeB. anthracisthe fastest, followed by moxifloxacin and ciprofloxacin and then doxycycline. Linezolid offered the lowest bacterial kill rate. Heat shock studies using the spore-producingB. anthracisstrain showed that with moxifloxacin, ciprofloxacin, and meropenem therapies the total population was mostly spores, while the population was primarily vegetative bacteria with linezolid and doxycycline therapies. Spores have a profound impact on the rate and extent of killing ofB. anthracis. Against spore-formingB. anthracis, the five antibiotics killed the total (spore and vegetative) bacterial population at similar rates (within 1 log10CFU/ml of each other). However, bactericidal antibiotics killed vegetativeB. anthracisfaster than bacteriostatic drugs. Since only vegetative-phaseB. anthracisproduces the toxins that may kill the infected host, the rate and mechanism of killing of an antibiotic may determine its overallin vivoefficacy. Further studies are needed to examine this important observation.


2011 ◽  
Vol 55 (6) ◽  
pp. 2655-2661 ◽  
Author(s):  
Gilles Brackman ◽  
Paul Cos ◽  
Louis Maes ◽  
Hans J. Nelis ◽  
Tom Coenye

ABSTRACTAlthough the exact role of quorum sensing (QS) in various stages of biofilm formation, maturation, and dispersal and in biofilm resistance is not entirely clear, the use of QS inhibitors (QSI) has been proposed as a potential antibiofilm strategy. We have investigated whether QSI enhance the susceptibility of bacterial biofilms to treatment with conventional antimicrobial agents. The QSI used in our study target the acyl-homoserine lactone-based QS system present inPseudomonas aeruginosaandBurkholderia cepaciacomplex organisms (baicalin hydrate, cinnamaldehyde) or the peptide-based system present inStaphylococcus aureus(hamamelitannin). The effect of tobramycin (P. aeruginosa,B. cepaciacomplex) and clindamycin or vancomycin (S. aureus), alone or in combination with QSI, was evaluated in variousin vitroandin vivobiofilm model systems, including two invertebrate models and one mouse pulmonary infection model.In vitrothe combined use of an antibiotic and a QSI generally resulted in increased killing compared to killing by an antibiotic alone, although reductions were strain and model dependent. A significantly higher fraction of infectedGalleria mellonellalarvae andCaenorhabditis eleganssurvived infection following combined treatment, compared to treatment with an antibiotic alone. Finally, the combined use of tobramycin and baicalin hydrate reduced the microbial load in the lungs of BALB/c mice infected withBurkholderia cenocepaciamore than tobramycin treatment alone. Our data suggest that QSI may increase the success of antibiotic treatment by increasing the susceptibility of bacterial biofilms and/or by increasing host survival following infection.


2020 ◽  
Vol 15 (3) ◽  
pp. 193-206
Author(s):  
Brognara Lorenzo ◽  
Salmaso Luca ◽  
Mazzotti Antonio ◽  
Di M. Alberto ◽  
Faldini Cesare ◽  
...  

Background: Chronic wounds are commonly associated with polymicrobial biofilm infections. In the last years, the extensive use of antibiotics has generated several antibiotic-resistant variants. To overcome this issue, alternative natural treatments have been proposed, including the use of microorganisms like probiotics. The aim of this manuscript was to review current literature concerning the application of probiotics for the treatment of infected chronic wounds. Methods: Relevant articles were searched in the Medline database using PubMed and Scholar, using the keywords “probiotics” and “wound” and “injuries”, “probiotics” and “wound” and “ulcer”, “biofilm” and “probiotics” and “wound”, “biofilm” and “ulcer” and “probiotics”, “biofilm” and “ulcer” and “probiotics”, “probiotics” and “wound”. Results: The research initially included 253 articles. After removal of duplicate studies, and selection according to specific inclusion and exclusion criteria, 19 research articles were included and reviewed, accounting for 12 in vitro, 8 in vivo studies and 2 human studies (three articles dealing with animal experiments included also in vitro testing). Most of the published studies about the effects of probiotics for the treatment of infected chronic wounds reported a partial inhibition of microbial growth, biofilm formation and quorum sensing. Discussion: The application of probiotics represents an intriguing option in the treatment of infected chronic wounds with multidrug-resistant bacteria; however, current results are difficult to compare due to the heterogeneity in methodology, laboratory techniques, and applied clinical protocols. Lactobacillus plantarum currently represents the most studied strain, showing a positive application in burns compared to guideline treatments, and an additional mean in chronic wound infections. Conclusions: Although preliminary evidence supports the use of specific strains of probiotics in certain clinical settings such as infected chronic wounds, large, long-term clinical trials are still lacking, and further research is needed.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


2019 ◽  
Vol 202 (8) ◽  
Author(s):  
Courtney E. Price ◽  
Dustin G. Brown ◽  
Dominique H. Limoli ◽  
Vanessa V. Phelan ◽  
George A. O’Toole

ABSTRACT Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus. We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner. IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro. Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Joel D. Ernst ◽  
Amber Cornelius ◽  
Miriam Bolz

ABSTRACTSecretion of specific proteins contributes to pathogenesis and immune responses in tuberculosis and other bacterial infections, yet the kinetics of protein secretion and fate of secreted proteinsin vivoare poorly understood. We generated new monoclonal antibodies that recognize theMycobacteriumtuberculosissecreted protein Ag85B and used them to establish and characterize a sensitive enzyme-linked immunosorbent assay (ELISA) to quantitate Ag85B in samples generatedin vitroandin vivo. We found that nutritional or culture conditions had little impact on the secretion of Ag85B and that there is considerable variation in Ag85B secretion by distinct strains in theM. tuberculosiscomplex: compared with the commonly used H37Rv strain (lineage 4),Mycobacteriumafricanum(lineage 6) secretes less Ag85B, and two strains from lineage 2 secrete more Ag85B. We also used the ELISA to determine that the rate of secretion of Ag85B is 10- to 100-fold lower than that of proteins secreted by Gram-negative and Gram-positive bacteria, respectively. ELISA quantitation of Ag85B in lung homogenates ofM. tuberculosisH37Rv-infected mice revealed that although Ag85B accumulates in the lungs as the bacterial population expands, the amount of Ag85B per bacterium decreases nearly 10,000-fold at later stages of infection, coincident with the development of T cell responses and arrest of bacterial population growth. These results indicate that bacterial protein secretionin vivois dynamic and regulated, and quantitation of secreted bacterial proteins can contribute to the understanding of pathogenesis and immunity in tuberculosis and other infections.IMPORTANCEBacterial protein secretion contributes to host-pathogen interactions, yet the process and consequences of bacterial protein secretion during infection are poorly understood. We developed a sensitive ELISA to quantitate a protein (termed Ag85B) secreted byM. tuberculosisand used it to find that Ag85B secretion occurs with slower kinetics than for proteins secreted by Gram-positive and Gram-negative bacteria and that accumulation of Ag85B in the lungs is markedly regulated as a function of the bacterial population density. Our results demonstrate that quantitation of bacterial proteins during infection can reveal novel insights into host-pathogen interactions.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Seong Eun Kim ◽  
Hee Kyung Kim ◽  
Su-Mi Choi ◽  
Yohan Yu ◽  
Uh Jin Kim ◽  
...  

ABSTRACT The mortality rate associated with Vibrio vulnificus sepsis remains high. An in vitro time-kill assay revealed synergism between tigecycline and ciprofloxacin. The survival rate was significantly higher in mice treated with tigecycline plus ciprofloxacin than in mice treated with cefotaxime plus minocycline. Thus, combination treatment with tigecycline-ciprofloxacin may be an effective novel antibiotic regimen for V. vulnificus sepsis.


Sign in / Sign up

Export Citation Format

Share Document