scholarly journals N-(3-Hydroxyhexanoyl)-l-Homoserine Lactone Is the Biologically Relevant Quormone That Regulates the phz Operon of Pseudomonas chlororaphis Strain 30-84

2007 ◽  
Vol 73 (22) ◽  
pp. 7443-7455 ◽  
Author(s):  
Sharik R. Khan ◽  
Jake Herman ◽  
Jessica Krank ◽  
Natalie J. Serkova ◽  
Mair E. A. Churchill ◽  
...  

ABSTRACT Phenazine production by Pseudomonas fluorescens 2-79 and P. chlororaphis isolates 30-84 and PCL1391 is regulated by quorum sensing through the activator PhzR and acyl-homoserine lactones (acyl-HSLs) synthesized by PhzI. PhzI from P. fluorescens 2-79 produces five acyl-HSLs that include four 3-hydroxy species. Of these, N-(3-hydroxyhexanoyl)-HSL is the biologically relevant ligand for PhzR. The quorum-sensing systems of P. chlororaphis strains 30-84 and PCL1391 have been reported to produce and respond to N-(hexanoyl)-HSL. These differences were of interest since PhzI and PhzR of strain 2-79 share almost 90% sequence identity with orthologs from strains 30-84 and PCL1391. In this study, as assessed by thin-layer chromatography, the three strains produce almost identical complements of acyl-HSLs. The major species produced by P. chlororaphis 30-84 were identified by mass spectrometry as 3-OH-acyl-HSLs with chain lengths of 6, 8, and 10 carbons. Heterologous bacteria expressing cloned phzI from strain 30-84 produced the four 3-OH acyl-HSLs in amounts similar to those seen for the wild type. Strain 30-84, but not strain 2-79, also produced N-(butanoyl)-HSL. A second acyl-HSL synthase of strain 30-84, CsaI, is responsible for the synthesis of this short-chain signal. Strain 30-84 accumulated N-(3-OH-hexanoyl)-HSL to the highest levels, more than 100-fold greater than that of N-(hexanoyl)-HSL. In titration assays, PhzR30-84 responded to both N-(3-OH-hexanoyl)- and N-(hexanoyl)-HSL with equal sensitivities. However, only the 3-OH-hexanoyl signal is produced by strain 30-84 at levels high enough to activate PhzR. We conclude that strains 2-79, 30-84, and PCL1391 use N-(3-OH-hexanoyl)-HSL to activate PhzR.

2017 ◽  
Vol 30 (7) ◽  
pp. 557-565 ◽  
Author(s):  
Ana Zúñiga ◽  
Raúl A. Donoso ◽  
Daniela Ruiz ◽  
Gonzalo A. Ruz ◽  
Bernardo González

Quorum-sensing systems play important roles in host colonization and host establishment of Burkholderiales species. Beneficial Paraburkholderia species share a conserved quorum-sensing (QS) system, designated BraI/R, that controls different phenotypes. In this context, the plant growth-promoting bacterium Paraburkholderia phytofirmans PsJN possesses two different homoserine lactone QS systems BpI.1/R.1 and BpI.2/R.2 (BraI/R-like QS system). The BpI.1/R.1 QS system was previously reported to be important to colonize and produce beneficial effects in Arabidopsis thaliana plants. Here, we analyzed the temporal variations of the QS gene transcript levels in the wild-type strain colonizing plant roots. The gene expression patterns showed relevant differences in both QS systems compared with the wild-type strain in the unplanted control treatment. The gene expression data were used to reconstruct a regulatory network model of QS systems in P. phytofirmans PsJN, using a Boolean network model. Also, we examined the phenotypic traits and transcript levels of genes involved in QS systems, using P. phytofirmans mutants in homoserine lactone synthases genes. We observed that the BpI.1/R.1 QS system regulates biofilm formation production in strain PsJN and this phenotype was associated with the lower expression of a specific extracytoplasmic function sigma factor ecf26.1 gene (implicated in biofilm formation) in the bpI.1 mutant strain.


Microbiology ◽  
2011 ◽  
Vol 157 (2) ◽  
pp. 459-472 ◽  
Author(s):  
K. De Maeyer ◽  
J. D'aes ◽  
G. K. H. Hua ◽  
M. Perneel ◽  
L. Vanhaecke ◽  
...  

Forty fluorescent Pseudomonas strains isolated from white and red cocoyam roots were tested for their ability to synthesize N-acyl-l-homoserine lactones (acyl-HSLs). Remarkably, only isolates from the red cocoyam rhizosphere that were antagonistic against the cocoyam root rot pathogen Pythium myriotylum and synthesized phenazine antibiotics produced acyl-HSLs. This supports the assumption that acyl-HSL production is related to the antagonistic activity of the strains. After detection, the signal molecules were identified through TLC-overlay and liquid chromatography-multiple MS (LC-MS/MS) analysis. In our representative strain, Pseudomonas CMR12a, production of the signal molecules could be assigned to two quorum-sensing (QS) systems. The first one is the QS system for phenazine production, PhzI/PhzR, which seemed to be well conserved, since it was genetically organized in the same way as in the well-described phenazine-producing Pseudomonas strains Pseudomonas fluorescens 2-79, Pseudomonas chlororaphis PCL1391 and Pseudomonas aureofaciens 30-84. The newly characterized genes cmrI and cmrR make up the second QS system of CMR12a, under the control of the uncommon N-3-hydroxy-dodecanoyl-homoserine lactone (3-OH-C12-HSL) and with low similarity to other Pseudomonas QS systems. No clear function could yet be assigned to the CmrI/CmrR system, although it contributes to the biocontrol capability of CMR12a. Both the PhzI/PhzR and CmrI/CmrR systems are controlled by the GacS/GacA two-component regulatory system.


2009 ◽  
Vol 55 (2) ◽  
pp. 210-214 ◽  
Author(s):  
Menghua Yang ◽  
Kejing Sun ◽  
Lei Zhou ◽  
Ruifu Yang ◽  
Zengtao Zhong ◽  
...  

One of the most important signal transduction pathways in bacteria, quorum sensing, is involved in many regulatory circuits in rhizobia, especially in the control of communication between rhizobia and their plant hosts. In this study, we identified 3 autoinducer synthase genes — mrlI1, mrlI2, and mrlI3 — in Mesorhizobium loti NZP 2213. We found that MrlI1 and MrlI2 could synthesize distinct N-acyl homoserine lactone (AHL) autoinducers in rich medium cultures, and the expression of mrlI1 was shown to be growth-phase-dependent. MrlI3 did not produce any detectable AHL molecules under the culture conditions tested. To investigate whether these AHL synthases affect nodulation, we examined the nodulation of AHL-deficient mutants on their native plant host Lotus corniculatus and found that the efficiency of nodulation of bacteria with mutations of any of these 3 synthase genes was reduced, suggesting that quorum sensing systems in M. loti may play an important role in successful establishment of rhizobium–legume symbiosis.


2001 ◽  
Vol 183 (18) ◽  
pp. 5376-5384 ◽  
Author(s):  
Christian van Delden ◽  
Rachel Comte ◽  
And Marc Bally

ABSTRACT During nutrient starvation, Escherichia coli elicits a stringent response involving the ribosome-associated protein RelA. Activation of RelA results in a global change in the cellular metabolism including enhanced expression of the stationary-phase sigma factor RpoS. In the human pathogen Pseudomonas aeruginosa, a complex quorum-sensing circuitry, linked to RpoS expression, is required for cell density-dependent production of many secreted virulence factors, including LasB elastase. Quorum sensing relies on the activation of specific transcriptional regulators (LasR and RhlR) by their corresponding autoinducers (3-oxo-C12-homoserine lactone [HSL] and C4-HSL), which function as intercellular signals. We found that overexpression of relA activated the expression of rpoS in P. aeruginosa and led to premature, cell density-independent LasB elastase production. We therefore investigated the effects of the stringent response on quorum sensing. Both lasR and rhlR gene expression and autoinducer synthesis were prematurely activated during the stringent response induced by overexpression of relA. Premature expression of lasR and rhlR was also observed when relA was overexpressed in a PAO1 rpoSmutant. The stringent response induced by the amino acid analogue serine hydroxamate (SHX) also led to premature production of the 3-oxo-C12-HSL autoinducer. This response to SHX was absent in a PAO1 relA mutant. These findings suggest that the stringent response can activate the two quorum-sensing systems of P. aeruginosa independently of cell density.


2005 ◽  
Vol 18 (3) ◽  
pp. 244-253 ◽  
Author(s):  
Thomas F. C. Chin-A-Woeng ◽  
Daan van den Broek ◽  
Ben J. J. Lugtenberg ◽  
Guido V. Bloemberg

The rhizobacterium Pseudomonas chlororaphis PCL1391 produces the antifungal metabolite phenazine-1-carboxamide (PCN), which is a crucial trait in its competition with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici in the rhizosphere. The expression of the PCN biosynthetic gene cluster in PCL1391 is population density-dependent and is regulated by the quorum-sensing genes phzI and phzR via synthesis of the autoinducer Nhexanoyl-L-homoserine lactone (C6-HSL). Here, we describe the identification of an additional regulatory gene of PCN biosynthesis in PCL1391. A mutation in the psrA gene (Pseudomonas sigma regulator), the gene product of which is a member of the TetR/AcrR family of transcriptional regulators, resulted in increased production of autoinducer molecules and PCN. Expression studies showed that inactivation of psrA resulted in increased expression of the phzI and phzR genes and the phz biosynthetic operon and that introduction of functional copies of psrA represses the expression of these genes, resulting in reduced production of autoinducer signal and PCN. Surprisingly, inactivation of psrA in the phzI or phzR quorum-sensing mutants, which do not produce detectable amounts of PCN and autoinducers by themselves, restored PCN biosynthesis. This phenomenon was accompanied by the appearance of compounds with autoinducer activities migrating at the positions of C4-HSL and C6-HSL on C18 reverse phase-thin-layer chromatography. These observations indicate that PsrA also represses at least one silent, yet unidentified, quorum-sensing system or autoinducer biosynthetic pathway in PCL1391. The expression of psrA declines at the onset of the stationary phase at the same moment at which quorum-sensing (-regulated) genes are activated. In addition, expression studies in a psrA- and a multicopy psrA background showed that psrA is autoregulated. Multiple copies of psrA repress its own expression. Mutation of gacS, encoding the sensor kinase member of a two-component global regulatory system significantly reduced production of autoinducers and PCN. We show a novel link between global regulation and quorum sensing via the PsrA regulator.


Microbiology ◽  
2010 ◽  
Vol 156 (10) ◽  
pp. 3096-3107 ◽  
Author(s):  
Carla Cugini ◽  
Diana K. Morales ◽  
Deborah A. Hogan

Candida albicans has been previously shown to stimulate the production of Pseudomonas aeruginosa phenazine toxins in dual-species colony biofilms. Here, we report that P. aeruginosa lasR mutants, which lack the master quorum sensing system regulator, regain the ability to produce quorum-sensing-regulated phenazines when cultured with C. albicans. Farnesol, a signalling molecule produced by C. albicans, was sufficient to stimulate phenazine production in LasR− laboratory strains and clinical isolates. P. aeruginosa ΔlasR mutants are defective in production of the Pseudomonas quinolone signal (PQS) due to their inability to properly induce pqsH, which encodes the enzyme necessary for the last step in PQS biosynthesis. We show that expression of pqsH in a ΔlasR strain was sufficient to restore PQS production, and that farnesol restored pqsH expression in ΔlasR mutants. The farnesol-mediated increase in pqsH required RhlR, a transcriptional regulator downstream of LasR, and farnesol led to higher levels of N-butyryl-homoserine lactone, the small molecule activator of RhlR. Farnesol promotes the production of reactive oxygen species (ROS) in a variety of species. Because the antioxidant N-acetylcysteine suppressed farnesol-induced RhlR activity in LasR− strains, and hydrogen peroxide was sufficient to restore PQS production in las mutants, we propose that ROS are responsible for the activation of downstream portions of this quorum sensing pathway. LasR mutants frequently arise in the lungs of patients chronically infected with P. aeruginosa. The finding that C. albicans, farnesol or ROS stimulate virulence factor production in lasR strains provides new insight into the virulence potential of these strains.


2002 ◽  
Vol 184 (6) ◽  
pp. 1597-1606 ◽  
Author(s):  
F. Wisniewski-Dyé ◽  
J. Jones ◽  
S. R. Chhabra ◽  
J. A. Downie

ABSTRACT Analysis of N-acyl-l-homoserine lactones (AHLs) produced by Rhizobium leguminosarum bv. viciae indicated that there may be a network of quorum-sensing regulatory systems producing multiple AHLs in this species. Using a strain lacking a symbiosis plasmid, which carries some of the quorum-sensing genes, we isolated mutations in two genes (raiI and raiR) that are required for production of AHLs. The raiIR genes are located adjacent to dad genes (involved in d-alanine catabolism) on a large indigenous plasmid. RaiR is predicted to be a typical LuxR-type quorum-sensing regulator and is required for raiI expression. The raiR gene was expressed at a low level, possibly from a constitutive promoter, and its expression was increased under the influence of the upstream raiI promoter. Using gene fusions and analysis of AHLs produced, we showed that expression of raiI is strongly reduced in strains carrying mutations in cinI or cinR, genes which determine a higher-level quorum-sensing system that is required for normal expression of raiIR. The product of CinI, N-(3-hydroxy-7-cis tetradecenoyl) homoserine lactone, can induce raiR-dependent raiI expression, although higher levels of expression are induced by other AHLs. Expression of raiI in a strain of Agrobacterium that makes no AHLs resulted in the identification of N-(3-hydroxyoctanoyl)-l-homoserine lactone (3OH,C8-HSL) as the major product of RaiI, although other AHLs that comigrate with N-hexanoyl-, N-heptanoyl-, and N-octanoyl-homoserine lactones were also made at low levels. The raiI gene was strongly induced by 3OH,C8-HSL (the product of RaiI) but could also be induced by other AHLs, suggesting that the raiI promoter can be activated by other quorum-sensing systems within a network of regulation which also involves AHLs determined by genes on the symbiotic plasmid. Thus, the raiIR and cinIR genes are part of a complex regulatory network that influences AHL biosynthesis in R. leguminosarum.


2007 ◽  
Vol 73 (10) ◽  
pp. 3183-3188 ◽  
Author(s):  
Takenori Ishida ◽  
Tsukasa Ikeda ◽  
Noboru Takiguchi ◽  
Akio Kuroda ◽  
Hisao Ohtake ◽  
...  

ABSTRACT N-Octanoyl cyclopentylamide (C8-CPA) was found to moderately inhibit quorum sensing in Pseudomonas aeruginosa PAO1. To obtain more powerful inhibitors, a series of structural analogs of C8-CPA were synthesized and examined for their ability to inhibit quorum sensing in P. aeruginosa PAO1. The lasB-lacZ and rhlA-lacZ reporter assays revealed that the chain length and the ring structure were critical for C8-CPA analogs to inhibit quorum sensing. N-Decanoyl cyclopentylamide (C10-CPA) was found to be the strongest inhibitor, and its concentrations required for half-maximal inhibition for lasB-lacZ and rhlA-lacZ expression were 80 and 90 μM, respectively. C10-CPA also inhibited production of virulence factors, including elastase, pyocyanin, and rhamnolipid, and biofilm formation without affecting growth of P. aeruginosa PAO1. C10-CPA inhibited induction of both lasI-lacZ by N-(3-oxododecanoyl)-l-homoserine lactone (PAI1) and rhlA-lacZ by N-butanoyl-l-homoserine lactone (PAI2) in the lasI rhlI mutant of P. aeruginosa PAO1, indicating that C10-CPA interferes with the las and rhl quorum-sensing systems via inhibiting interaction between their response regulators (LasR and RhlR) and autoinducers.


Sign in / Sign up

Export Citation Format

Share Document