indigenous plasmid
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
Tomohiro Morohoshi ◽  
Kanako Nameki ◽  
Nobutaka Someya

Abstract We present the complete genome sequences of three Erwinia rhapontici strains, MAFF 311153, 311154, and 311155. These chromosome sequences contained variety types of luxI/luxR gene pair involved in acylhomoserine lactone (AHL) biosynthesis and reception. Large-scale insertion sequence was observed in the indigenous plasmid of MAFF 311154 and contained eraI3/eraR3 gene pair which make possible to produce acylhomoserine lactone.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 797
Author(s):  
Muchen Zhang ◽  
Xiaoxuan Wang ◽  
Temoor Ahmed ◽  
Mengju Liu ◽  
Zhifeng Wu ◽  
...  

Rhizoctonia solani is the causative agent of rice sheath blight disease. In a previous study, we found that the growth of R. solani was inhibited by Burkholderia seminalis strain R456. Therefore, the present study was conducted to identify the genes involved in the antifungal activity of B. seminalis strain R456 by using a Tn5 transposon mutation method. Firstly, we constructed a random insertion transposon library of 997 mutants, out of which 11 mutants showed the defective antifungal activity against R. solani. Furthermore, the 10 antagonism-related genes were successfully identified based on analysis of the Tn5 transposon insertion site. Indeed, this result indicated that three mutants were inserted on an indigenous plasmid in which the same insertion site was observed in two mutants. In addition, the remaining eight mutants were inserted on different genes encoding glycosyl transferase, histone H1, nonribosomal peptide synthetase, methyltransferase, MnmG, sulfate export transporter, catalase/peroxidase HPI and CysD, respectively. Compared to the wild type, the 11 mutants showed a differential effect in bacteriological characteristics such as cell growth, biofilm formation and response to H2O2 stress, revealing the complexity of action mode of these antagonism-related genes. However, a significant reduction of cell motility was observed in the 11 mutants compared to the wild type. Therefore, it can be inferred that the antifungal mechanism of the 10 above-mentioned genes may be, at least partially, due to the weakness of cell motility. Overall, the result of this study will be helpful for us to understand the biocontrol mechanism of this bacterium.


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Xiang-Na Niu ◽  
Zhi-Qiong Wei ◽  
Hai-Fan Zou ◽  
Gui-Gang Xie ◽  
Feng Wu ◽  
...  

Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 1991-2001 ◽  
Author(s):  
Nicholas C. K. Heng ◽  
Nancy L. Ragland ◽  
Pearl M. Swe ◽  
Hayley J. Baird ◽  
Megan A. Inglis ◽  
...  

Dysgalacticin is a novel bacteriocin produced by Streptococcus dysgalactiae subsp. equisimilis strain W2580 that has a narrow spectrum of antimicrobial activity directed primarily against the principal human streptococcal pathogen Streptococcus pyogenes. Unlike many previously described bacteriocins of Gram-positive bacteria, dysgalacticin is a heat-labile 21.5 kDa anionic protein that kills its target without inducing lysis. The N-terminal amino acid sequence of dysgalacticin [Asn-Glu-Thr-Asn-Asn-Phe-Ala-Glu-Thr-Gln-Lys-Glu-Ile-Thr-Thr-Asn-(Asn)-Glu-Ala] has no known homologue in publicly available sequence databases. The dysgalacticin structural gene, dysA, is located on the indigenous plasmid pW2580 of strain W2580 and encodes a 220 aa preprotein which is probably exported via a Sec-dependent transport system. Natural dysA variants containing conservative amino acid substitutions were also detected by sequence analyses of dysA elements from S. dysgalactiae strains displaying W2580-like inhibitory profiles. Production of recombinant dysgalacticin by Escherichia coli confirmed that this protein is solely responsible for the inhibitory activity exhibited by strain W2580. A combination of in silico secondary structure prediction and reductive alkylation was employed to demonstrate that dysgalacticin has a novel structure containing a disulphide bond essential for its biological activity. Moreover, dysgalacticin displays similarity in predicted secondary structure (but not primary amino acid sequence or inhibitory spectrum) with another plasmid-encoded streptococcal bacteriocin, streptococcin A-M57 from S. pyogenes, indicating that dysgalacticin represents a prototype of a new class of antimicrobial proteins.


2003 ◽  
Vol 69 (5) ◽  
pp. 2533-2539 ◽  
Author(s):  
Dayananda Siddavattam ◽  
Syed Khajamohiddin ◽  
Bramanandam Manavathi ◽  
Suresh B. Pakala ◽  
Mike Merrick

ABSTRACT Several bacterial strains that can use organophosphate pesticides as a source of carbon have been isolated from soil samples collected from diverse geographical regions. All these organisms synthesize an enzyme called parathion hydrolase, and in each case the enzyme is encoded by a gene (opd) located on a large indigenous plasmid. These plasmids show considerable genetic diversity, but the region containing the opd gene is highly conserved. Two opd plasmids, pPDL2 from Flavobacterium sp. and pCMS1 from Pseudomonas diminuta, are well characterized, and in each of them a region of about 5.1 kb containing the opd gene shows an identical restriction pattern. We now report the complete sequence of the conserved region of plasmid pPDL2. The opd gene is flanked upstream by an insertion sequence, ISFlsp1, that is a member of the IS21 family, and downstream by a Tn3-like element encoding a transposase and a resolvase. Adjacent to opd but transcribed in the opposite direction is an open reading frame (orf243) with the potential to encode an aromatic hydrolase somewhat similar to Pseudomonas putida TodF. We have shown that orf243 encodes a polypeptide of 27 kDa, which plays a role in the degradation of p-nitrophenol and is likely to act in concert with opd in the degradation of parathion. The linkage of opd and orf243, the organization of the genes flanking opd, and the wide geographical distribution of these genes suggest that this DNA sequence may constitute a complex catabolic transposon.


2002 ◽  
Vol 184 (6) ◽  
pp. 1597-1606 ◽  
Author(s):  
F. Wisniewski-Dyé ◽  
J. Jones ◽  
S. R. Chhabra ◽  
J. A. Downie

ABSTRACT Analysis of N-acyl-l-homoserine lactones (AHLs) produced by Rhizobium leguminosarum bv. viciae indicated that there may be a network of quorum-sensing regulatory systems producing multiple AHLs in this species. Using a strain lacking a symbiosis plasmid, which carries some of the quorum-sensing genes, we isolated mutations in two genes (raiI and raiR) that are required for production of AHLs. The raiIR genes are located adjacent to dad genes (involved in d-alanine catabolism) on a large indigenous plasmid. RaiR is predicted to be a typical LuxR-type quorum-sensing regulator and is required for raiI expression. The raiR gene was expressed at a low level, possibly from a constitutive promoter, and its expression was increased under the influence of the upstream raiI promoter. Using gene fusions and analysis of AHLs produced, we showed that expression of raiI is strongly reduced in strains carrying mutations in cinI or cinR, genes which determine a higher-level quorum-sensing system that is required for normal expression of raiIR. The product of CinI, N-(3-hydroxy-7-cis tetradecenoyl) homoserine lactone, can induce raiR-dependent raiI expression, although higher levels of expression are induced by other AHLs. Expression of raiI in a strain of Agrobacterium that makes no AHLs resulted in the identification of N-(3-hydroxyoctanoyl)-l-homoserine lactone (3OH,C8-HSL) as the major product of RaiI, although other AHLs that comigrate with N-hexanoyl-, N-heptanoyl-, and N-octanoyl-homoserine lactones were also made at low levels. The raiI gene was strongly induced by 3OH,C8-HSL (the product of RaiI) but could also be induced by other AHLs, suggesting that the raiI promoter can be activated by other quorum-sensing systems within a network of regulation which also involves AHLs determined by genes on the symbiotic plasmid. Thus, the raiIR and cinIR genes are part of a complex regulatory network that influences AHL biosynthesis in R. leguminosarum.


2001 ◽  
Vol 47 (12) ◽  
pp. 1126-1131 ◽  
Author(s):  
Ming Guo ◽  
Shulamit Manulis ◽  
Isaac Barash ◽  
Amnon Lichter

The operon for cytokinin biosynthesis in the gall-forming bacterium Erwinia herbicola pv. gypsophilae (Ehg) has been previously shown to reside on an indigenous plasmid (pPATHEhg) that is mandatory for pathogenicity. This operon consists of two genes: the first open reading frame (pre-etz) is of unknown function, whereas the second one (etz) encodes for isopentenyl transferase. Northern hybridization performed with the wild-type strain Ehg824-1 grown in Luria-Bertani broth demonstrated two transcripts of which an etz-specific transcript (1.0 kb) was predominant. Fusion of upstream DNA fragments of both pre-etz and etz to the ice nucleation reporter gene inaZ in pVSP61 showed high ice nucleation activity in both cultures, confirming the presence of two independent promoters. An increase of 1–1.5 orders in transcriptional activity of these promoters was observed following inoculation of gypsophila cuttings. Mutants of Ehg824-1 were generated by insertion of inaZ into pre-etz and etz using the transposon reporter Tn3-Spice. An increase of about two orders in transcriptional activity was recorded with both mutants following inoculation of gypsophila or bean cuttings. A similar induction was also observed when the bacteria were applied to the leaf surface of these plants. Unlike other virulence genes present on the pPATHEhg, neither pre-etz nor etz was regulated by the adjacent hrp gene cluster.Key words: pre-etz and etz operon, cytokinin, plant induction, ice nucleation activity.


2001 ◽  
Vol 183 (11) ◽  
pp. 3282-3292 ◽  
Author(s):  
Hongqiao Li ◽  
Matthias S. Ullrich

ABSTRACT In the plant pathogen Pseudomonas syringaepv. glycinea PG4180 and other bacterial species, synthesis of the exopolysaccharide levan is catalyzed by the extracellular enzyme levansucrase. The results of Southern blotting and PCR analysis indicated the presence of three levansucrase-encoding genes in strain PG4180: lscA, lscB, andlscC. In this study, lscB andlscC were cloned from a genomic library of strain PG4180. Sequence analysis of the two lsc genes showed that they were virtually identical to each other and highly similar to the previously characterized lscA gene.lscA and lscC had a chromosomal location, whereas lscB resided on an indigenous plasmid of PG4180. Mutants with impaired expression of individual lsc genes and double mutants were generated by marker exchange mutagenesis. Determination of levansucrase activities in these mutants revealed that the lscB gene product was secreted but not that oflscA or lscC. Our results indicated thatlscB and lscC but not lscAcontributed to periplasmic levan synthesis of PG4180. The lscB lscC double mutant was completely defective in levan formation and could be complemented by either lscB orlscC. Our data suggested a compartment-specific localization of two lsc gene products, with LscB being the secreted, extracellular enzyme and LscC being the predominantly periplasmic levansucrase. Results of Western blot analyses indicated that lscA was not expressed and that lscAwas not associated with levansucrase activities in any particular protein fraction. LscA could be detected in PG4180 only when transcribed from the vector-borne P lac promoter. PCR screening in various P. syringae strains with primers derived from the three characterized lscgenes demonstrated the presence of multiple Lsc isoenzymes in otherP. syringae pathovars.


Sign in / Sign up

Export Citation Format

Share Document