scholarly journals Interaction of Transcriptional Repressor ArgR with Transcriptional Regulator FarR at theargBPromoter Region inCorynebacterium glutamicum

2010 ◽  
Vol 77 (3) ◽  
pp. 711-718 ◽  
Author(s):  
Soo Youn Lee ◽  
Jae-Min Park ◽  
Jin Hyung Lee ◽  
Suk-Tai Chang ◽  
Jin-Soo Park ◽  
...  

ABSTRACTInCorynebacterium glutamicum, the ArgR protein, a transcriptional repressor, affects the expression level of theargBgene through binding to its promoter region. TheargBpromoter region (positions −77 to −25) has been found byin vitroelectrophoretic mobility shift assay (EMSA) results andin silicoanalysis to be important for the DNA binding of ArgR. Proline supplementation prevented the DNA binding of ArgR to theargBpromoter region and triggered an increase of theargBmRNA level. Additional mutational analyses of theargBpromoter region found nucleotides critical for ArgR binding (G located at position −58, C at position −55, and A at position −41 of theargBpromoter) in that region. Another transcriptional repressor, FarR, was also demonstrated to bind to theargBpromoter region. This binding was delimited to positions −57 to −77 on theargBpromoter. FarR has only one putative binding domain located at positions −57 to −77, but this region exactly overlapped with the binding region located from positions −55 to −77 for the binding of ArgR within theargBpromoter; thus, if ArgR bound with theargBpromoter first, the binding of FarR was not observed in this region. However, if FarR bound to the binding domain located at positions −57 to −77 first, ArgR could bind other binding sites located at positions −49 to −25 within theargBpromoter. Finally, this study suggests that ArgR can affect FarR binding to theargBpromoter region, as protein binding is dominated by the protein most able to do so.

2010 ◽  
Vol 84 (8) ◽  
pp. 3767-3779 ◽  
Author(s):  
Kris White ◽  
Hua Peng ◽  
John Hay ◽  
William T. Ruyechan

ABSTRACT The varicella-zoster virus (VZV) IE62 protein is the major transcriptional activator. IE62 is capable of associating with DNA both nonspecifically and in a sequence-specific manner via a consensus binding site (5′-ATCGT-3′). However, the function of the consensus site is poorly understood, since IE62 efficiently transactivates promoter elements lacking this sequence. In the work presented here, sequence analysis of the VZV genome revealed the presence of 245 IE62 consensus sites throughout the genome. Some 54 sites were found to be present within putative VZV promoters. Electrophoretic mobility shift assay (EMSA) experiments using an IE62 fragment containing the IE62 DNA-binding domain and duplex oligonucleotides that did or did not contain the IE62 consensus binding sequence yielded KD (equilibrium dissociation constant) values in the nanomolar range. Further, the IE62 DNA binding domain was shown to have a 5-fold-increased affinity for its consensus site compared to nonconsensus sequences. The effect of consensus site presence and position on IE62-mediated activation of native VZV and model promoters was examined using site-specific mutagenesis and transfection and superinfection reporter assays. In all promoters examined, the consensus sequence functioned as a distance-dependent repressive element. Protein recruitment assays utilizing the VZV gI promoter indicated that the presence of the consensus site increased the recruitment of IE62 but not Sp1. These data suggest a model where the IE62 consensus site functions to down-modulate IE62 activation, and interaction of IE62 with this sequence may result in loss or decrease of the ability of IE62 to recruit cellular factors needed for full promoter activation.


2010 ◽  
Vol 162 (2) ◽  
pp. 407-421 ◽  
Author(s):  
Neeraj Tomar ◽  
Hema Bora ◽  
Ratnakar Singh ◽  
Nandita Gupta ◽  
Punit Kaur ◽  
...  

ObjectiveGlial cells missing 2 (GCM2) gene encodes a parathyroid-specific transcription factor. We assessed GCM2 gene sequence in patients with isolated hypoparathyroidism (IH).DesignCase–control study.MethodsComplete DNA sequencing of the GCM2 gene including its exons, promoter, and 5′ and 3′ UTRs was performed in 24/101 patients with IH. PCR–restriction fragment length polymorphism was used to detect a novel R110W mutation in all 101 IH patients and 655 healthy controls. Significance of the mutation was assessed by electrophoretic mobility shift assay (EMSA) and nuclear localization on transfection.ResultsA heterozygous R110W mutation was present in DNA-binding domain in 11/101 patients (10.9%) and absent in 655 controls (P<10−7). Four of 13 nonaffected first-degree relatives for five of these index cases had R110W mutation. Four heterozygous single nucleotide polymorphisms were found in the 5′ region. One of the 11 patients with R110W also had T370M change in compound heterozygous form. Mutant R110W and T370M GCM2 proteins showed decreased binding with GCM recognition elements on EMSA indicating loss of function. Both wild-type and R110W mutant GCM2 proteins showed nuclear localization.ConclusionsThe present study indicates a significant association of R110W variant with IH. Absence of effect of heterozygous R110W mutation on DNA binding and presence of the same mutation in asymptomatic family members indicate that additional genetic (akin to T370M change) or nongenetic factors might contribute to the expression of diseases in IH. Alternatively, it is possible that association of R110W with IH could be due to linkage disequilibrium with the unidentified relevant genes in IH.


2000 ◽  
Vol 74 (5) ◽  
pp. 2084-2093 ◽  
Author(s):  
Joel Schaley ◽  
Robert J. O'Connor ◽  
Laura J. Taylor ◽  
Dafna Bar-Sagi ◽  
Patrick Hearing

ABSTRACT The adenovirus type 5 (Ad5) E4-6/7 protein interacts directly with different members of the E2F family and mediates the cooperative and stable binding of E2F to a unique pair of binding sites in the Ad5 E2a promoter region. This induction of E2F DNA binding activity strongly correlates with increased E2a transcription when analyzed using virus infection and transient expression assays. Here we show that while different adenovirus isolates express an E4-6/7 protein that is capable of induction of E2F dimerization and stable DNA binding to the Ad5 E2a promoter region, not all of these viruses carry the inverted E2F binding site targets in their E2a promoter regions. The Ad12 and Ad40 E2a promoter regions bind E2F via a single binding site. However, these promoters bind adenovirus-induced (dimerized) E2F very weakly. The Ad3 E2a promoter region binds E2F very poorly, even via a single binding site. A possible explanation of these results is that the Ad E4-6/7 protein evolved to induce cellular gene expression. Consistent with this notion, we show that infection with different adenovirus isolates induces the binding of E2F to an inverted configuration of binding sites present in the cellular E2F-1 promoter. Transient expression of the E4-6/7 protein alone in uninfected cells is sufficient to induce transactivation of the E2F-1 promoter linked to chloramphenicol acetyltransferase or green fluorescent protein reporter genes. Further, expression of the E4-6/7 protein in the context of adenovirus infection induces E2F-1 protein accumulation. Thus, the induction of E2F binding to the E2F-1 promoter by the E4-6/7 protein observed in vitro correlates with transactivation of E2F-1 promoter activity in vivo. These results suggest that adenovirus has evolved two distinct mechanisms to induce the expression of the E2F-1 gene. The E1A proteins displace repressors of E2F activity (the Rb family members) and thus relieve E2F-1 promoter repression; the E4-6/7 protein complements this function by stably recruiting active E2F to the E2F-1 promoter to transactivate expression.


1993 ◽  
Vol 13 (7) ◽  
pp. 3999-4010 ◽  
Author(s):  
M Merika ◽  
S H Orkin

GATA-binding proteins constitute a family of transcription factors that recognize a target site conforming to the consensus WGATAR (W = A or T and R = A or G). Here we have used the method of polymerase chain reaction-mediated random site selection to assess in an unbiased manner the DNA-binding specificity of GATA proteins. Contrary to our expectations, we show that GATA proteins bind a variety of motifs that deviate from the previously assigned consensus. Many of the nonconsensus sequences bind protein with high affinity, equivalent to that of conventional GATA motifs. By using the selected sequences as probes in the electrophoretic mobility shift assay, we demonstrate overlapping, but distinct, sequence preferences for GATA family members, specified by their respective DNA-binding domains. Furthermore, we provide additional evidence for interaction of amino and carboxy fingers of GATA-1 in defining its binding site. By performing cotransfection experiments, we also show that transactivation parallels DNA binding. A chimeric protein containing the finger domain of areA and the activation domains of GATA-1 is capable of activating transcription in mammalian cells through GATA motifs. Our findings suggest a mechanism by which GATA proteins might selectively regulate gene expression in cells in which they are coexpressed.


Genetics ◽  
1998 ◽  
Vol 148 (3) ◽  
pp. 989-1005 ◽  
Author(s):  
Keiko Umezu ◽  
Neal Sugawara ◽  
Clark Chen ◽  
James E Haber ◽  
Richard D Kolodner

Abstract Replication protein A (RPA) is a single-stranded DNA-binding protein identified as an essential factor for SV40 DNA replication in vitro. To understand the in vivo functions of RPA, we mutagenized the Saccharomyces cerevisiae RFA1 gene and identified 19 ultraviolet light (UV) irradiation- and methyl methane sulfonate (MMS)-sensitive mutants and 5 temperature-sensitive mutants. The UV- and MMS-sensitive mutants showed up to 104 to 105 times increased sensitivity to these agents. Some of the UV- and MMS-sensitive mutants were killed by an HO-induced double-strand break at MAT. Physical analysis of recombination in one UV- and MMS-sensitive rfa1 mutant demonstrated that it was defective for mating type switching and single-strand annealing recombination. Two temperature-sensitive mutants were characterized in detail, and at the restrictive temperature were found to have an arrest phenotype and DNA content indicative of incomplete DNA replication. DNA sequence analysis indicated that most of the mutations altered amino acids that were conserved between yeast, human, and Xenopus RPA1. Taken together, we conclude that RPA1 has multiple roles in vivo and functions in DNA replication, repair, and recombination, like the single-stranded DNA-binding proteins of bacteria and phages.


1994 ◽  
Vol 14 (9) ◽  
pp. 6056-6067
Author(s):  
M Tanaka ◽  
W Herr

The POU domain activator Oct-2 contains an N-terminal glutamine-rich transcriptional activation domain. An 18-amino-acid segment (Q18III) from this region reconstituted a fully functional activation domain when tandemly reiterated and fused to either the Oct-2 or GAL4 DNA-binding domain. A minimal transcriptional activation domain likely requires three tandem Q18III segments, because one or two tandem Q18III segments displayed little activity, whereas three to five tandem segments were active and displayed increasing activity with increasing copy number. As with natural Oct-2 activation domains, in our assay a reiterated activation domain required a second homologous or heterologous activation domain to stimulate transcription effectively when fused to the Oct-2 POU domain. These results suggest that there are different levels of synergy within and among activation domains. Analysis of reiterated activation domains containing mutated Q18III segments revealed that leucines and glutamines, but not serines or threonines, are critical for activity in vivo. Curiously, several reiterated activation domains that were inactive in vivo were active in vitro, suggesting that there are significant functional differences in our in vivo and in vitro assays. Reiteration of a second 18-amino-acid segment from the Oct-2 glutamine-rich activation domain (Q18II) was also active, but its activity was DNA-binding domain specific, because it was active when fused to the GAL4 than to the Oct-2 DNA-binding domain. The ability of separate short peptide segments derived from a single transcriptional activation domain to activate transcription after tandem reiteration emphasizes the flexible and modular nature of a transcriptional activation domain.


1992 ◽  
Vol 12 (2) ◽  
pp. 444-454
Author(s):  
S M Ruben ◽  
R Narayanan ◽  
J F Klement ◽  
C H Chen ◽  
C A Rosen

The NF-kappa B transcription factor complex is composed of two proteins, designated p50 and p65, both having considerable homology to the product of the rel oncogene. We present evidence that the p65 subunit is a potent transcriptional activator in the apparent absence of the p50 subunit, consistent with in vitro results demonstrating that p65 can interact with DNA on its own. To identify the minimal activation domain, chimeric fusion proteins between the DNA binding domain of the yeast transcriptional activator protein GAL4 and regions of the carboxy terminus of p65 were constructed, and their transcriptional activity was assessed by using a GAL4 upstream activation sequence-driven promoter-chloramphenicol acetyltransferase fusion. This analysis suggests that the boundaries of the activation domain lie between amino acids 415 and 550. Moreover, single amino acid changes within residues 435 to 459 greatly diminished activation. Similar to other activation domains, this region contains a leucine zipper-like motif as well as an overall net negative charge. To identify those residues essential for DNA binding, we made use of a naturally occurring derivative of p65, lacking residues 222 to 231 (hereafter referred to as p65 delta), and produced via an alternative splice site. Gel mobility shift analysis using bacterially expressed p65, p65 delta, and various mutants indicates that residues 222 to 231 are important for binding to kappa B DNA. Coimmunoprecipitation analysis suggests that these residues likely contribute to the multimerization function required for homomeric complex formation or heteromeric complex formation with p50 in that no association of p65 delta with itself or with p50 was evident. However, p65 delta was able to form weak heteromeric complexes with p65 that were greatly reduced in their ability to bind DNA. On the basis of these findings, we suggest that subtle changes within the proposed multimerization domain can elicit different effects with the individual Rel-related proteins and that a potential role of p65 delta may be to negatively regulate NF-kappa B function through formation of nonfunctional heteromeric complexes.


2004 ◽  
Vol 24 (5) ◽  
pp. 2091-2102 ◽  
Author(s):  
Chao Wei ◽  
Carolyn M. Price

ABSTRACT Pot1 is a single-stranded-DNA-binding protein that recognizes telomeric G-strand DNA. It is essential for telomere capping in Saccharomyces pombe and regulates telomere length in humans. Human Pot1 also interacts with proteins that bind the duplex region of the telomeric tract. Thus, like Cdc13 from S. cerevisiae, Pot 1 may have multiple roles at the telomere. We show here that endogenous chicken Pot1 (cPot1) is present at telomeres during periods of the cell cycle when t loops are thought to be present. Since cPot1 can bind internal loops and directly adjacent DNA-binding sites, it is likely to fully coat and protect both G-strand overhangs and the displaced G strand of a t loop. The minimum binding site of cPot1 is double that of the S. pombe DNA-binding domain. Although cPot can self associate, dimerization is not required for DNA binding and hence does not explain the binding-site duplication. Instead, the DNA-binding domain appears to be extended to contain a second binding motif in addition to the conserved oligonucleotide-oligosaccharide (OB) fold present in other G-strand-binding proteins. This second motif could be another OB fold. Although dimerization is inefficient in vitro, it may be regulated in vivo and could promote association with other telomere proteins and/or telomere compaction.


1995 ◽  
Vol 42 (2) ◽  
pp. 171-176
Author(s):  
R Rzepecki ◽  
E Markiewicz ◽  
J Szopa

The nuclear matrices from White bush (Cucurbita pepo var. patisonina) cell nuclei have been isolated using three methods: I, standard procedure involving extraction of cell nuclei with 2 M NaCl and 1% Triton X-100; II, the same with pre-treatment of cell nuclei with 0.5 mM CuSO4 (stabilisation step); and III, method with extraction by lithium diiodosalicylate (LIS), and compared the polypeptide pattern. The isolated matrices specifically bind SAR DNA derived from human beta-interferon gene in the exogenous SAR binding assay and in the gel mobility shift assay. Using IgG against the 32 kDa endonuclease we have found in the DNA-protein blot assay that this protein is one of the proteins binding SAR DNA. We have identified three proteins with molecular mass of 65 kDa, 60 kDa and 32 kDa which are responsible for SAR DNA binding in the gel mobility shift assay experiments.


Sign in / Sign up

Export Citation Format

Share Document