scholarly journals Strain-Level Diversity Analysis of Pseudomonas fragi after In Situ Pangenome Reconstruction Shows Distinctive Spoilage-Associated Metabolic Traits Clearly Selected by Different Storage Conditions

2018 ◽  
Vol 85 (1) ◽  
Author(s):  
Francesca De Filippis ◽  
Antonietta La Storia ◽  
Francesco Villani ◽  
Danilo Ercolini

ABSTRACT Microbial spoilage of raw meat causes huge economic losses every year. An understanding of the microbial ecology associated with the spoilage and its dynamics during the refrigerated storage of meat can help in preventing and delaying the spoilage-related activities. The raw meat microbiota is usually complex, but only a few members will develop during storage and cause spoilage upon the pressure from several external factors, such as temperature and oxygen availability. We characterized the metagenome of beef packed aerobically or under vacuum during refrigerated storage to explore how different packaging conditions may influence the microbial composition and potential spoilage-associated activities. Different population dynamics and spoilage-associated genomic repertoires occurred in beef stored aerobically or in vacuum packaging. Moreover, the pangenomes of Pseudomonas fragi strains were extracted from metagenomes. We demonstrated the presence of specific, storage-driven strain-level profiles of Pseudomonas fragi, characterized by different gene repertoires and thus potentially able to act differently during meat spoilage. The results provide new knowledge on strain-level microbial ecology associated with meat spoilage and may be of value for future strategies of spoilage prevention and food waste reduction. IMPORTANCE This work provides insights on the mechanisms involved in raw beef spoilage during refrigerated storage and on the selective pressure exerted by the packaging conditions. We highlighted the presence of different microbial metagenomes during the spoilage of beef packaged aerobically or under vacuum. The packaging condition was able to select specific Pseudomonas fragi strains with distinctive genomic repertoires. This study may help in deciphering the behavior of different biomes directly in situ in food and in understanding the specific contribution of different strains to food spoilage.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nirmani N. Wickramasinghe ◽  
Mya M. Hlaing ◽  
Joshua T. Ravensdale ◽  
Ranil Coorey ◽  
P. Scott Chandry ◽  
...  

Abstract Psychrotrophic Pseudomonas species are the key spoilage bacteria of aerobically stored chilled meat. These organisms readily form biofilms on meat under refrigerated conditions leading to consumer rejection and associated economic losses. Limited information is available on the matrix composition of the biofilms formed by these bacteria. We quantified and characterized the main components of the matrix of mono-species biofilms of selected Pseudomonas fragi and Pseudomonas lundensis strains using chemical analysis and Raman spectroscopy. The biofilms were grown at 10 °C and 25 °C on nitro-cellulose membranes placed on surface sterilized beef cuts. Extra-cellular polymeric substances of the matrix were extracted in soluble and bound forms and were chemically assessed for total carbohydrates, proteins and extra-cellular DNA. Both Pseudomonas species showed a significant increase in total carbohydrates and total proteins when grown at 10 °C as compared to 25 °C. Extra-cellular DNA did not show a strong correlation with growth temperature. Raman spectra were obtained from planktonic bacteria and membrane grown biofilms at 10 °C and 25 °C. Higher levels of guanine were detected in planktonic cells as compared to biofilm cells. This study suggests that psychrotrophic Pseudomonas species may respond to cold stress by increasing extra-cellular polymer secretions.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 373
Author(s):  
Siti Fairuz Yusoff ◽  
Farah Farhanah Haron ◽  
Norhayu Asib ◽  
Mahmud Tengku Muda Mohamed ◽  
Siti Izera Ismail

Postharvest fruits including tomatoes are commonly infected by gray mold disease resulting in significant economic losses in the fruit industry. Therefore, this study aimed to develop botanical fungicide derived from Vernonia amygdalina leaf extract to control gray mold on tomato. The emulsion formulation containing surfactant, oil carrier and water was optimized at different non-ionic alkyl polyglucoside surfactants through eleven combinations of oil to surfactant ratio (0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1 and 10:0 w/w). From eight selected formulations, two formulations, F5 and F7 showed stable in storage, remarkable thermodynamic stability, smaller particle size (66.44 and 139.63 nm), highly stable in zeta potential (−32.70 and −31.70 mV), low in polydispersity index (0.41 and 0.40 PdI), low in viscosity (4.20 and 4.37 cP) and low in surface tension (27.62 and 26.41 mN/m) as compared to other formulations. In situ antifungal activity on tomato fruits showed F5 formulation had a fungicidal activity against B. cinerea with zero disease incidence and severity, whereas F7 formulation reduced 62.5% disease incidence compared to a positive control with scale 1. Based on these findings, F5 formulation exhibited pronounced antifungal activity and may contribute to the development of new and safe antifungal product against gray mold on tomato.


2021 ◽  
Author(s):  
Sayalee Joshi ◽  
Aide Robles ◽  
Samuel Aguiar ◽  
Anca G. Delgado

AbstractChain elongation is a growth-dependent anaerobic metabolism that combines acetate and ethanol into butyrate, hexanoate, and octanoate. While the model microorganism for chain elongation, Clostridium kluyveri, was isolated from a saturated soil sample in the 1940s, chain elongation has remained unexplored in soil environments. During soil fermentative events, simple carboxylates and alcohols can transiently accumulate up to low mM concentrations, suggesting in situ possibility of microbial chain elongation. Here, we examined the occurrence and microbial ecology of chain elongation in four soil types in microcosms and enrichments amended with chain elongation substrates. All soils showed evidence of chain elongation activity with several days of incubation at high (100 mM) and environmentally relevant (2.5 mM) concentrations of acetate and ethanol. Three soils showed substantial activity in soil microcosms with high substrate concentrations, converting 58% or more of the added carbon as acetate and ethanol to butyrate, butanol, and hexanoate. Semi-batch enrichment yielded hexanoate and octanoate as the most elongated products and microbial communities predominated by C. kluyveri and other Firmicutes genera not known to undergo chain elongation. Collectively, these results strongly suggest a niche for chain elongation in anaerobic soils that should not be overlooked in soil microbial ecology studies.


1998 ◽  
Vol 88 (6) ◽  
pp. 1111-1115 ◽  
Author(s):  
Kalman Kovacs ◽  
Eva Horvath ◽  
Lucia Stefaneanu ◽  
Juan Bilbao ◽  
William Singer ◽  
...  

✓ The authors report on the morphological features of a pituitary adenoma that produced growth hormone (GH) and adrenocorticotropic hormone (ACTH). This hormone combination produced by a single adenoma is extremely rare; a review of the available literature showed that only one previous case has been published. The tumor, which was removed from a 62-year-old man with acromegaly, was studied by histological and immunocytochemical analyses, transmission electron microscopy, immunoelectron microscopy, and in situ hybridization. When the authors used light microscopy, the tumor appeared to be a bimorphous mixed pituitary adenoma composed of two separate cell types: one cell population synthesized GH and the other ACTH. The cytogenesis of pituitary adenomas that produce more than one hormone is obscure. It may be that two separate cells—one somatotroph and one corticotroph—transformed into neoplastic cells, or that the adenoma arose in a common stem cell that differentiated into two separate cell types. In this case immunoelectron microscopy conclusively demonstrated ACTH in the secretory granules of several somatotrophs. This was associated with a change in the morphological characteristics of secretory granules. Thus it is possible that the tumor was originally a somatotropic adenoma that began to produce ACTH as a result of mutations that occurred during tumor progression.


2014 ◽  
Vol 81 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Bhagyalakshmi Kalidass ◽  
Muhammad Farhan Ul-Haque ◽  
Bipin S. Baral ◽  
Alan A. DiSpirito ◽  
Jeremy D. Semrau

ABSTRACTIt is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that inMethylosinus trichosporiumOB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced byM. trichosporiumOB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and activein situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin.


2014 ◽  
Vol 80 (8) ◽  
pp. 2484-2492 ◽  
Author(s):  
Hedwig-Annabell Schild ◽  
Sebastian W. Fuchs ◽  
Helge B. Bode ◽  
Bernd Grünewald

ABSTRACTThe spore-forming bacteriumPaenibacillus larvaecauses a severe and highly infective bee disease, American foulbrood (AFB). Despite the large economic losses induced by AFB, the virulence factors produced byP. larvaeare as yet unknown. To identify such virulence factors, we experimentally infected young, susceptible larvae of the honeybee,Apis mellifera carnica, with differentP. larvaeisolates. Honeybee larvae were rearedin vitroin 24-well plates in the laboratory after isolation from the brood comb. We identified genotype-specific differences in the etiopathology of AFB between the tested isolates ofP. larvae, which were revealed by differences in the median lethal times. Furthermore, we confirmed that extracts ofP. larvaecultures contain low-molecular-weight compounds, which are toxic to honeybee larvae. Our data indicate thatP. larvaesecretes metabolites into the medium with a potent honeybee toxic activity pointing to a novel pathogenic factor(s) ofP. larvae. Genome mining ofP. larvaesubsp.larvaeBRL-230010 led to the identification of several biosynthesis gene clusters putatively involved in natural product biosynthesis, highlighting the potential ofP. larvaeto produce such compounds.


2012 ◽  
Vol 78 (20) ◽  
pp. 7467-7475 ◽  
Author(s):  
Amy Apprill ◽  
Heather Q. Marlow ◽  
Mark Q. Martindale ◽  
Michael S. Rappé

ABSTRACTRelationships between corals and specific bacterial associates are thought to play an important role in coral health. In this study, the specificity of bacteria associating with the coralPocillopora meandrinawas investigated by exposing coral embryos to various strains of cultured marine bacteria, sterile seawater, or raw seawater and examining the identity, density, and location of incorporated cells. The isolates utilized in this experiment included members of the Roseobacter and SAR11 clades of theAlphaproteobacteria, aPseudoalteromonasspecies of theGammaproteobacteria, and aSynechococcusspecies of theCyanobacteriaphylum. Based on terminal restriction fragment length polymorphism analysis of small-subunit rRNA genes, similarities in bacterial communities associated with 170-h-old planulae were observed regardless of treatment, suggesting that bacteria may have been externally associated from the outset of the experiment. Microscopic examination ofP. meandrinaplanulae by fluorescencein situhybridization with bacterial and Roseobacter clade-specific oligonucleotide probes revealed differences in the densities and locations of planulae-associated cells. Planulae exposed to either raw seawater or strains ofPseudoalteromonasand Roseobacter harbored the highest densities of internally associated cells, of which 20 to 100% belonged to the Roseobacter clade. Planulae exposed to sterile seawater or strains of the SAR11 clade andSynechococcusdid not show evidence of prominent bacterial associations. Additional analysis of the raw-seawater-exposed planulae via electron microscopy confirmed the presence of internally associated prokaryotic cells, as well as virus-like particles. These results suggest that the availability of specific microorganisms may be an important factor in the establishment of coral-bacterial relationships.


2010 ◽  
Vol 1 (4) ◽  
pp. 344-357 ◽  
Author(s):  
V. Richter‐Trummer ◽  
P.M.G.P. Moreira ◽  
S.D. Pastrama ◽  
M.A.P. Vaz ◽  
P.M.S.T. de Castro

PurposeThe purpose of this paper is to develop a methodology for in situ stress intensity factor (SIF) determination that can be used for the analysis of cracked structures. The technique is based on digital image correlation (DIC) combined with an overdetermined algorithm.Design/methodology/approachThe linear overdeterministic algorithm for calculating the SIF based on stress values around the crack tip is applied to a strain field obtained by DIC.FindingsAs long as the image quality is sufficiently high, a good accuracy can be obtained for the measured SIF. The crack tip can be automatically detected based on the same strain field. The use of the strain field instead of the displacement field, eliminates problems related to the rigid body motion of the analysed structure.Practical implicationsIn future works, based on the applied techniques, the SIF of complex cracked plane stress structures can be accurately determined in real engineering applications.Originality/valueThe paper demonstrates application of known techniques, refined for other applications, also the use of stress field for SIF overdeterministic calculations.


2015 ◽  
Vol 81 (17) ◽  
pp. 5907-5916 ◽  
Author(s):  
Z. J. Jay ◽  
J. P. Beam ◽  
A. Dohnalkova ◽  
R. Lohmayer ◽  
B. Bodle ◽  
...  

ABSTRACTThermoproteales(phylumCrenarchaeota) populations are abundant in high-temperature (>70°C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolatePyrobaculum yellowstonensisstrain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80°C, pH 6.1, 135 μM As) and relate this organism to geochemical processes occurringin situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G+C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for thede novosynthesis of nearly all required cofactors and metabolites were identified. The comparative genomics ofP. yellowstonensisand the assembled metagenome sequence from JCHS showed that this organism is highly related (∼95% average nucleotide sequence identity) toin situpopulations. The physiological attributes and metabolic capabilities ofP. yellowstonensisprovide an important foundation for developing an understanding of the distribution and function of these populations in YNP.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Kyle C. Costa ◽  
Megan Bergkessel ◽  
Scott Saunders ◽  
Jonas Korlach ◽  
Dianne K. Newman

ABSTRACTDiverse bacteria, including severalPseudomonasspecies, produce a class of redox-active metabolites called phenazines that impact different cell types in nature and disease. Phenazines can affect microbial communities in both positive and negative ways, where their presence is correlated with decreased species richness and diversity. However, little is known about how the concentration of phenazines is modulatedin situand what this may mean for the fitness of members of the community. Through culturing of phenazine-degrading mycobacteria, genome sequencing, comparative genomics, and molecular analysis, we identified several conserved genes that are important for the degradation of threePseudomonas-derived phenazines: phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), and pyocyanin (PYO). PCA can be used as the sole carbon source for growth by these organisms. Deletion of several genes inMycobacterium fortuitumabolishes the degradation phenotype, and expression of two genes in a heterologous host confers the ability to degrade PCN and PYO. In cocultures with phenazine producers, phenazine degraders alter the abundance of different phenazine types. Not only does degradation support mycobacterial catabolism, but also it provides protection to bacteria that would otherwise be inhibited by the toxicity of PYO. Collectively, these results serve as a reminder that microbial metabolites can be actively modified and degraded and that these turnover processes must be considered when the fate and impact of such compounds in any environment are being assessed.IMPORTANCEPhenazine production byPseudomonasspp. can shape microbial communities in a variety of environments ranging from the cystic fibrosis lung to the rhizosphere of dryland crops. For example, in the rhizosphere, phenazines can protect plants from infection by pathogenic fungi. The redox activity of phenazines underpins their antibiotic activity, as well as providing pseudomonads with important physiological benefits. Our discovery that soil mycobacteria can catabolize phenazines and thereby protect other organisms against phenazine toxicity suggests that phenazine degradation may influence turnoverin situ. The identification of genes involved in the degradation of phenazines opens the door to monitoring turnover in diverse environments, an essential process to consider when one is attempting to understand or control communities influenced by phenazines.


Sign in / Sign up

Export Citation Format

Share Document