scholarly journals Role of Secondary Metabolites in Establishment of the Mutualistic Partnership between Xenorhabdus nematophila and the Entomopathogenic Nematode Steinernema carpocapsae

2014 ◽  
Vol 81 (2) ◽  
pp. 754-764 ◽  
Author(s):  
Swati Singh ◽  
David Orr ◽  
Emmanuel Divinagracia ◽  
Joseph McGraw ◽  
Kellen Dorff ◽  
...  

ABSTRACTXenorhabdus nematophilaengages in a mutualistic partnership with the nematodeSteinernema carpocapsae, which invades insects, migrates through the gut, and penetrates into the hemocoel (body cavity). We showed previously that during invasion ofManduca sexta, the gut microbeStaphylococcus saprophyticusappeared transiently in the hemocoel, whileEnterococcus faecalisproliferated asX. nematophilabecame dominant.X. nematophilaproduces diverse secondary metabolites, including the major water-soluble antimicrobial xenocoumacin. Here, we study the role ofX. nematophilaantimicrobials in interspecies competition under biologically relevant conditions using strains lacking either xenocoumacin (ΔxcnKLstrain), xenocoumacin and the newly discovered antibiotic F (ΔxcnKL:F strain), or allngrA-derived secondary metabolites (ngrAstrain). Competition experiments were performed in Grace's insect medium, which is based on lepidopteran hemolymph.S. saprophyticuswas eliminated when inoculated into growing cultures of either the ΔxcnKLstrain or ΔxcnKL:F strain but grew in the presence of thengrAstrain, indicating thatngrA-derived antimicrobials, excluding xenocoumacin or antibiotic F, were required to eliminate the competitor. In contrast,S. saprophyticuswas eliminated when coinjected intoM. sextawith either the ΔxcnKLorngrAstrain, indicating thatngrA-derived antimicrobials were not required to eliminate the competitorin vivo.E. faecalisgrowth was facilitated when coinjected with either of the mutant strains. Furthermore, nematode reproduction inM. sextanaturally infected with infective juveniles colonized with thengrAstrain was markedly reduced relative to the level of reproduction when infective juveniles were colonized with the wild-type strain. These findings provide new insights into interspecies competition in a host environment and suggest thatngrA-derived compounds serve as signals forin vivonematode reproduction.

2014 ◽  
Vol 80 (14) ◽  
pp. 4277-4285 ◽  
Author(s):  
Swati Singh ◽  
Jordan M. Reese ◽  
Ángel M. Casanova-Torres ◽  
Heidi Goodrich-Blair ◽  
Steven Forst

ABSTRACTXenorhabdus nematophilaengages in a mutualistic association with the nematodeSteinernema carpocapsae. The nematode invades and traverses the gut of susceptible insects.X. nematophilais released in the insect blood (hemolymph), where it suppresses host immune responses and functions as a pathogen.X. nematophilaproduces diverse antimicrobials in laboratory cultures. The natural competitors thatX. nematophilaencounters in the hemolymph and the role of antimicrobials in interspecies competition in the host are poorly understood. We show that gut microbes translocate into the hemolymph when the nematode penetrates the insect intestine. During natural infection,Staphylococcus saprophyticuswas initially present and subsequently disappeared from the hemolymph, whileEnterococcus faecalisproliferated.S. saprophyticuswas sensitive toX. nematophilaantibiotics and was eliminated from the hemolymph when coinjected withX. nematophila. In contrast,E. faecaliswas relatively resistant toX. nematophilaantibiotics. When injected by itself,E. faecalispersisted (∼103CFU/ml), but when coinjected withX. nematophila, it proliferated to ∼109CFU/ml. Injection ofE. faecalisinto the insect caused the upregulation of an insect antimicrobial peptide, while the transcript levels were suppressed whenE. faecaliswas coinjected withX. nematophila. Its relative antibiotic resistance together with suppression of the host immune system byX. nematophilamay account for the growth ofE. faecalis. At higher injected levels (106CFU/insect),E. faecaliscould kill insects, suggesting that it may contribute to virulence in anX. nematophilainfection. These findings provide new insights into the competitive events that occur early in infection afterS. carpocapsaeinvades the host hemocoel.


2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Mengyi Cao ◽  
Tilak Patel ◽  
Tara Rickman ◽  
Heidi Goodrich-Blair ◽  
Elizabeth A. Hussa

ABSTRACT Xenorhabdus nematophila bacteria are mutualistic symbionts of Steinernema carpocapsae nematodes and pathogens of insects. The X. nematophila global regulator Lrp controls the expression of many genes involved in both mutualism and pathogenic activities, suggesting a role in the transition between the two host organisms. We previously reported that natural populations of X. nematophila exhibit various levels of Lrp expression and that cells expressing relatively low levels of Lrp are optimized for virulence in the insect Manduca sexta. The adaptive advantage of the high-Lrp-expressing state was not established. Here we used strains engineered to express constitutively high or low levels of Lrp to test the model in which high-Lrp-expressing cells are adapted for mutualistic activities with the nematode host. We demonstrate that high-Lrp cells form more robust biofilms in laboratory media than do low-Lrp cells, which may reflect adherence to host tissues. Also, our data showed that nematodes cultivated with high-Lrp strains are more frequently colonized than are those associated with low-Lrp strains. Taken together, these data support the idea that high-Lrp cells have an advantage in tissue adherence and colonization initiation. Furthermore, our data show that high-Lrp-expressing strains better support nematode reproduction than do their low-Lrp counterparts under both in vitro and in vivo conditions. Our data indicate that heterogeneity of Lrp expression in X. nematophila populations provides diverse cell populations adapted to both pathogenic (low-Lrp) and mutualistic (high-Lrp) states. IMPORTANCE Host-associated bacteria experience fluctuating conditions during both residence within an individual host and transmission between hosts. For bacteria that engage in evolutionarily stable, long-term relationships with particular hosts, these fluctuations provide selective pressure for the emergence of adaptive regulatory mechanisms. Here we present evidence that the bacterium Xenorhabdus nematophila uses various levels of the transcription factor Lrp to optimize its association with its two animal hosts, nematodes and insects, with which it behaves as a mutualist and a pathogen, respectively. Building on our previous finding that relatively low cellular levels of Lrp are optimal for pathogenesis, we demonstrate that, conversely, high levels of Lrp promote mutualistic activities with the Steinernema carpocapsae nematode host. These data suggest that X. nematophila has evolved to utilize phenotypic variation between high- and low-Lrp-expression states to optimize its alternating behaviors as a mutualist and a pathogen.


2011 ◽  
Vol 77 (20) ◽  
pp. 7247-7254 ◽  
Author(s):  
Holly Snyder ◽  
Hongjun He ◽  
Heather Owen ◽  
Chris Hanna ◽  
Steven Forst

ABSTRACTXenorhabdus nematophilaengages in mutualistic associations with the infective juvenile (IJ) stage of specific entomopathogenic nematodes. Mannose-resistant (Mrx) chaperone-usher-type fimbriae are produced when the bacteria are grown on nutrient broth agar (NB agar). The role of Mrx fimbriae in the colonization of the nematode host has remained unresolved. We show thatX. nematophilagrown on LB agar produced flagella rather than fimbriae. IJs propagated onX. nematophilagrown on LB agar were colonized to the same extent as those propagated on NB agar. Further, progeny IJs were normally colonized bymrxmutant strains that lacked fimbriae both when bacteria were grown on NB agar and when coinjected into the insect host with aposymbiotic nematodes. Themrxstrains were not competitively defective for colonization when grown in the presence of wild-type cells on NB agar. In addition, a phenotypic variant strain that lacked fimbriae colonized as well as the wild-type strain. In contrast, themrxstrains displayed a competitive colonization defectin vivo. IJ progeny obtained from insects injected with comixtures of nematodes carrying either the wild-type or themrxstrain were colonized almost exclusively with the wild-type strain. Likewise, when insects were coinjected with aposymbiotic IJs together with a comixture of the wild-type andmrxstrains, the resulting IJ progeny were predominantly colonized with the wild-type strain. These results revealed that Mrx fimbriae confer a competitive advantage during colonizationin vivoand provide new insights into the role of chaperone-usher fimbriae in the life cycle ofX. nematophila.


2015 ◽  
Vol 83 (5) ◽  
pp. 2089-2098 ◽  
Author(s):  
Seongok Kim ◽  
Hyelyeon Hwang ◽  
Kwang-Pyo Kim ◽  
Hyunjin Yoon ◽  
Dong-Hyun Kang ◽  
...  

Cronobacterspp. are opportunistic pathogens that cause neonatal meningitis and sepsis with high mortality in neonates. Despite the peril associated withCronobacterinfection, the mechanisms of pathogenesis are still being unraveled. Hfq, which is known as an RNA chaperone, participates in the interaction with bacterial small RNAs (sRNAs) to regulate posttranscriptionally the expression of various genes. Recent studies have demonstrated that Hfq contributes to the pathogenesis of numerous species of bacteria, and its roles are varied between bacterial species. Here, we tried to elucidate the role of Hfq inC. sakazakiivirulence. In the absence ofhfq,C. sakazakiiwas highly attenuated in disseminationin vivo, showed defects in invasion (3-fold) into animal cells and survival (103-fold) within host cells, and exhibited low resistance to hydrogen peroxide (102-fold). Remarkably, the loss ofhfqled to hypermotility on soft agar, which is contrary to what has been observed in other pathogenic bacteria. The hyperflagellated bacteria were likely to be attributable to the increased transcription of genes associated with flagellar biosynthesis in a strain lackinghfq. Together, these data strongly suggest thathfqplays important roles in the virulence ofC. sakazakiiby participating in the regulation of multiple genes.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


2017 ◽  
Vol 37 (24) ◽  
Author(s):  
Sucheta Arora ◽  
Rajashree A. Deshpande ◽  
Martin Budd ◽  
Judy Campbell ◽  
America Revere ◽  
...  

ABSTRACT Sae2 promotes the repair of DNA double-strand breaks in Saccharomyces cerevisiae. The role of Sae2 is linked to the Mre11/Rad50/Xrs2 (MRX) complex, which is important for the processing of DNA ends into single-stranded substrates for homologous recombination. Sae2 has intrinsic endonuclease activity, but the role of this activity has not been assessed independently from its functions in promoting Mre11 nuclease activity. Here we identify and characterize separation-of-function mutants that lack intrinsic nuclease activity or the ability to promote Mre11 endonucleolytic activity. We find that the ability of Sae2 to promote MRX nuclease functions is important for DNA damage survival, particularly in the absence of Dna2 nuclease activity. In contrast, Sae2 nuclease activity is essential for DNA repair when the Mre11 nuclease is compromised. Resection of DNA breaks is impaired when either Sae2 activity is blocked, suggesting roles for both Mre11 and Sae2 nuclease activities in promoting the processing of DNA ends in vivo. Finally, both activities of Sae2 are important for sporulation, indicating that the processing of meiotic breaks requires both Mre11 and Sae2 nuclease activities.


2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Jonathan L. Portman ◽  
Qiongying Huang ◽  
Michelle L. Reniere ◽  
Anthony T. Iavarone ◽  
Daniel A. Portnoy

ABSTRACT Cholesterol-dependent cytolysins (CDCs) represent a family of homologous pore-forming proteins secreted by many Gram-positive bacterial pathogens. CDCs mediate membrane binding partly through a conserved C-terminal undecapeptide, which contains a single cysteine residue. While mutational changes to other residues in the undecapeptide typically have severe effects, mutation of the cysteine residue to alanine has minor effects on overall protein function. Thus, the role of this highly conserved reactive cysteine residue remains largely unknown. We report here that the CDC listeriolysin O (LLO), secreted by the facultative intracellular pathogen Listeria monocytogenes, was posttranslationally modified by S-glutathionylation at this conserved cysteine residue and that either endogenously synthesized or exogenously added glutathione was sufficient to form this modification. When recapitulated with purified protein in vitro, this modification completely ablated the activity of LLO, and this inhibitory effect was fully reversible by treatment with reducing agents. A cysteine-to-alanine mutation in LLO rendered the protein completely resistant to inactivation by S-glutathionylation, and a mutant expressing this mutation retained full hemolytic activity. A mutant strain of L. monocytogenes expressing the cysteine-to-alanine variant of LLO was able to infect and replicate within bone marrow-derived macrophages indistinguishably from the wild type in vitro, yet it was attenuated 4- to 6-fold in a competitive murine infection model in vivo. This study suggests that S-glutathionylation may represent a mechanism by which CDC-family proteins are posttranslationally modified and regulated and help explain an evolutionary pressure to retain the highly conserved undecapeptide cysteine.


2020 ◽  
Vol 88 (5) ◽  
Author(s):  
Susmita Ghosh ◽  
Elizabeth A. Ruelke ◽  
Joshua C. Ferrell ◽  
Maria D. Bodero ◽  
Kenneth A. Fields ◽  
...  

ABSTRACT The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis. In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia’s ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor.


2015 ◽  
Vol 84 (1) ◽  
pp. 187-193 ◽  
Author(s):  
Renu Verma ◽  
Thaís Cabrera Galvão Rojas ◽  
Renato Pariz Maluta ◽  
Janaína Luisa Leite ◽  
Livia Pilatti Mendes da Silva ◽  
...  

The extraintestinal pathogen termed avian pathogenicEscherichia coli(APEC) is known to cause colibacillosis in chickens. The molecular basis of APEC pathogenesis is not fully elucidated yet. In this work, we deleted a component of the Yad gene cluster (yadC) in order to understand the role of Yad in the pathogenicity of the APEC strain SCI-07.In vitro, the transcription level ofyadCwas upregulated at 41°C and downregulated at 22°C. TheyadCexpressionin vivowas more pronounced in lungs than in spleen, suggesting a role in the early steps of the infection. Chicks infected with the wild-type and mutant strains presented, respectively, 80% and 50% mortality rates. The ΔyadCstrain presented a slightly decreased ability to adhere to HeLa cells with or without thed-mannose analog compared with the wild type. Real-time PCR (RT-PCR) assays showed thatfimHwas downregulated (P< 0.05) andcsgAandecpAwere slightly upregulated in the mutant strain, showing thatyadCmodulates expression of other fimbriae. Bacterial internalization studies showed that the ΔyadCstrain had a lower number of intracellular bacteria recovered from Hep-2 cells and HD11 cells than the wild-type strain (P< 0.05). Motility assays in soft agar demonstrated that the ΔyadCstrain was less motile than the wild type (P< 0.01). Curiously, flagellum-associated genes were not dramatically downregulated in the ΔyadCstrain. Taken together, the results show that the fimbrial adhesin Yad contributes to the pathogenicity and modulates different biological characteristics of the APEC strain SCI-07.


2012 ◽  
Vol 80 (9) ◽  
pp. 3268-3278 ◽  
Author(s):  
Abiodun D. Ogunniyi ◽  
Layla K. Mahdi ◽  
Claudia Trappetti ◽  
Nadine Verhoeven ◽  
Daphne Mermans ◽  
...  

ABSTRACTStreptococcus pneumoniae(the pneumococcus) continues to be responsible for a high level of global morbidity and mortality resulting from pneumonia, bacteremia, meningitis, and otitis media. Here we have used a novel technique involving niche-specific, genome-widein vivotranscriptomic analyses to identify genes upregulated in distinct niches during pathogenesis after intranasal infection of mice with serotype 4 or 6A pneumococci. The analyses yielded 28 common, significantly upregulated genes in the lungs relative to those in the nasopharynx and 25 significantly upregulated genes in the blood relative to those in the lungs in both strains, some of which were previously unrecognized. The role of five upregulated genes from either the lungs or the blood in pneumococcal pathogenesis and virulence was then evaluated by targeted mutagenesis. One of the mutants (ΔmalX) was significantly attenuated for virulence in the lungs, two (ΔaliAand ΔilvH) were significantly attenuated for virulence in the blood relative to the wild type, and two others (ΔcbiOand ΔpiuA) were completely avirulent in a mouse intranasal challenge model. We also show that the products ofaliA,malX, andpiuAare promising candidates for incorporation into multicomponent protein-based pneumococcal vaccines currently under development. Importantly, we suggest that this new approach is a viable complement to existing strategies for the discovery of genes critical to the distinct stages of invasive pneumococcal disease and potentially has broad application for novel protein antigen discovery in other pathogens such asS. pyogenes,Haemophilus influenzaetype b, andNeisseria meningitidis.


Sign in / Sign up

Export Citation Format

Share Document